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Foreword

 

Writing a new book is always a big experience and an adventure. And, in this case, it is not 
an adventure that will be finished when the book is ready: It will be a continuous endeavor 
for many years. Following the main idea and guidelines of Güitaca Publishers, this is a 
book that will reinvent itself again and again, following the Microsoft Office 365 constant 
evolution.

After working with Microsoft SharePoint Server since its introduction, it was somehow 
difficult to switch to SharePoint Online at first. I came from SharePoint implementations 
where everything was customized, where everything the customer wanted was possible to 
be done. And, suddenly, I had to work wearing a very tight corset that hindered my 
freedom as an architect and developer; furthermore, the product was no more "mine", but 
owned by Microsoft. When the online version started evolving in a freer direction, I found 
back the joy that SharePoint Server always gave me. And, in the latest years, exploring 
and implementing not only all the new products in the Office suite but also the countless 
possibilities of interaction with Microsoft Azure, my professional life has not only been 
enriched, but has also become more exhilarating (and complicated).

This book would not have been possible without the support of the complete team of 
Güitaca Publishers. The incessant encouragement of Vicky (the editor in chief) has been 
heartwarming, in a way only she can do it. And the backing of Alcira (in charge of the 
linguistics team), helping me through the labyrinths of a language that is not mine, has 
been invaluable. I also need to thank Vadim Gremyachev (colleague MVP and developer, 
https://blog.vgrem.com), and John Gillard (from ABCpdf, 
http://www.websupergoo.com) for their generosity helping me with software to support 
my work.

I hope you will enjoy this book and find it helpful following your path through Office 365.

With kindest regards,

Gustavo Velez 
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Book structure
 

"Office 365: the best recipes for developers" is a book aimed at coders. It explains how to 
work programmatically with Microsoft Office 365.

Office 365 is the collaboration and information sharing platform of Microsoft. It offers a few 
servers (Exchange, SharePoint), editing and authoring tools (Outlook, Word, Excel, 
PowerPoint, Visio), and a myriad of other applications to help businesses in creating, 
managing and organizing information.

 

Whom is this book for?

This is a book made by and targeted to developers. We assume the readers do know how 
the Office applications work: You will not find functional descriptions or instructions for use. 
The book is also for developers that know the programming tools and technologies used 
by Microsoft and Office 365: Visual Studio, Visual Studio Code, CSharp, PowerShell, 
JavaScript, etc.

 

 
To develop with Office, if you do not have a license, you can join the 
Office Developer Program to get one and do the necessary development 
with the Office 365 suite of programs: 
 
https://developer.microsoft.com/en-us/office
/dev-program. 
 
The subscription is valid for 90 days and can be renewed for another 90 
days for as long as you are using it for development activity.
 
 

 

Books by subscription 

This is one in the series of books published by Güitaca under the mantra "Books by 
Subscription". Because modern technologies, and specially cloud software, evolve in a 
very fast tempo, the only way to maintain our readers actualized is publishing books that 
progress at the same speed as the technology.

https://developer.microsoft.com/en-us/office/dev-program


You can buy the book in three ways:

- Book plus subscription for 12 updates. You will get the latest book version, 
access to the monthly updates, access to the repositories with the source code, and 
support from the author.

- Book only. You will get the first version of the book. You will miss the updates, will 
have no access to the source code repositories nor any kind of support. This is the 
case if you buy the book from Amazon or any other place and not directly from 
Güitaca (see the following section if this is your case). 

- Subscription only. If you bought the book only and want to update it to the latest 
version, or if your subscription has expired and you want to renew it.

If you have a subscription, every four to six weeks you will receive an update that includes:

- Changes, modifications, and additions made by Microsoft to the technologies 
explained in the book.

- New content. We are aware that the book, probably, will never comprise every 
aspect of Office 365. Also, we do not have the arrogance to say that the author 
knows everything about Office. But we can ensure that we are aiming to make the 
content as complete as we can. 

- Additionally, you get support from the author. If you have any question about the 
book or the published code, just let us know (info@guitaca.com) and we will try to 
help you as soon as possible (if we can, of course).

After 12 updates, we will produce a new edition, consolidating the last updates, adding 
new content if necessary, and initializing a new cycle. If you bought the book with 
subscription, you do not need to pay for it again: Your book registration will comprise the 
new edition as well if the subscription is valid.

 

If you bought the book from Amazon or another provider

If you bought your book from Amazon or any other provider, you will only get the book, will 
have no updates subscription, no access to the source code and no support from the 
author.

You can update your book getting the complete experience by going to our site 
https://guitaca.com, and buying the Subscription only offering. You only need to send 
us the receipt you got from Amazon or other provider, and you will get the full and most 
recent book version, access to the following 12 updates, access to the source code 
repositories, and support from the author. 

 

mailto:info@guitaca.com
https://guitaca.com/


Your book registration 

 

The book updates are available from our download site https://guitaca.com
/Home/Login. When you buy the book from our site (or the Subscription deal if you bought 
your book from a provider other than Güitaca), you receive a License Key sent to you with 
the receipt or after our validation. With your email address and this license code, you can 
log in to the downloads site. If you lose the code, you can ask for a new one from the site 
(a confirmation email will be sent to your email address, and you need to validate it).

 

 

 
Data privacy statement:
We only ask for an email address for registration of your book's copy and 
make the downloads available for you. We DON'T use it for any 
commercial purpose, and we will never monetize it in any way. You 
will only receive a few emails from us:

- When you buy the book (or subscription) from our site, you receive 
one email with the acknowledgement of receipt and your License 
Key code.

- If you lose your password and request a new one, we will send one 
validation email first and then another one, after validation, with 
the new License Key to the registered address.

- By default, we will send you one email when a new update is ready 
for download. You can void it at any moment from the download 
site self (and you can change it again if you wish).

- If your subscription is coming to an end, we will send you one 
email with instructions on how to renew it.

 
 

 

 

About the source code

All the source code was developed using Visual Studio Enterprise and, in some cases, 
Visual Studio Code. We always use the last version of Visual Studio, with the latest 
patches installed. Each fragment of code (recipe) was tested to ensure the code is 
functioning correctly. Whenever possible, we also made unit-test classes (not available for 
download), so that we can automatically test the code if Microsoft changes something in 
the APIs.

 

https://guitaca.com/Home/Login


 

 
Although Visual Studio Enterprise was used for the code, you can also 
use Visual Studio Community, which can be downloaded for free from 
the Microsoft site:
 
https://visualstudio.microsoft.com/downloads/
 
Visual Studio Code is an Open Source and free code editor that can be 
downloaded from the same site, and is used for some parts of the book as 
well.
 

 

 

The code is simplified as much as possible to minimize its size: It does not include, for 
example, exception routines, and it should not be used directly for production applications.

All the source code can be downloaded from our source code repositories. To locate the 
solution used, each source fragment in the book has a header in the following form (if you 
bought the book only offered from Amazon or other provider, your copy will not have the 
information about the repo and code location):

 

 

Where:

1 is the chapter number and sequential number of the recipe in the chapter. If you need to 
send us a comment about any code fragment in the book, please refer to this number.

2 is the solution code identifier. This is the name of the solution that you will find in the 

https://visualstudio.microsoft.com/downloads/


repository.

3 is the file name where the recipe can be found in the solution.

4 is the additional information about the routines, NuGets, dlls, etc., required to make the 
recipe work.
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Exchange Online 
 

 

1. Exchange Online @#bm$%

 Exchange Online is the hosted version for the messaging platform 
in Microsoft Office 365 that provides organizations with access to 
the full-featured version of the traditional Onprem Exchange Server.
Microsoft Exchange Online is among the most mature of 
Microsoft’s cloud offerings, being part of the Office cloud offering 
from the beginning, when Office 365 was called Business 
Productivity Online Suite (BPOS). That also means that Exchange 
is almost fully developed and there has not been any new main 
functionality added for years.
The same can be said about the development possibilities of 
Exchange: The current API, the Exchange Web Services (EWS), 
hasn't changed in many years, although it is becoming replaced by 
the Microsoft Graph API, which is progressively introducing a new 
REST interface for the server.
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1.1. Introduction to developing for Exchange @#bm$% 

Exchange Online offers three main possibilities to be accessed programmatically: Exchange Web 
Services API (EWS), a dedicated set of PowerShell cmdlets (called Exchange Online PowerShell), and, 
since the introduction of Microsoft Graph, the possibility to approach Exchange Online using REST APIs 
has been open. Because Graph is an ongoing project by Microsoft, the functionality it offers is not (yet) 
as complete as the possibilities given by EWS, but Graph is officially replacing EWS. The Exchange 
Online PowerShell is mainly used for configuration, monitoring, maintenance, and to manage Exchange 
from the command line.

 

 
EWS is becoming deprecated: Microsoft has announced 

(https://developer.microsoft.com/en-us/graph/blogs/upcoming-
changes-to-exchange-web-services-ews-api-for-office-365/) that 
starting on July 19th, 2018 "...Exchange Web Services (EWS) will no longer receive 
feature updates. While the service will continue to receive security updates and certain 
non-security updates, product design and features will remain unchanged. This change 
also applies to the EWS SDKs for Java and .NET as well."
 

 

EWS can be used in precisely the same way for Exchange Online and Exchange Onprem, the only 
difference is given by the disparities in functionality in the two systems (they are very similar in any way), 
and the login method. EWS can be used in different ways: As a managed API by any development 
language (making SOAP, Simple Object Access Protocol, calls under the hood), as a set of SOAP Web 
Services, and from PowerShell. Because SOAP has been replaced by REST in the enterprise and is, in 
fact, not used anymore, its programmatic use will be not discussed in this book.

 

 
Regarding PowerShell, there is a set of cmdlets dedicated to Exchange Online 
Protection (EOP), but they are only used in standalone EOP organizations (for 
example, to protect an OnPremises Exchange environment). If you are working with an 
Office 365 subscription that includes EOP (E3, E5, etc.), you don't use Exchange Online 
Protection PowerShell; the same features are available in the standard Exchange Online 
PowerShell modules.
 

 

1.2. Login in Exchange @#bm$%

As it happens with other servers from Office 365, it is necessary to log in to the system to be 
authenticated, before any program can start interacting with the data.

 

1.2.1. Login from a managed language (CSharp) @#bm$%

For the CSharp examples in this chapter, the values to log in to Exchange (email address, password, 
application ID, and tenant ID, depending on the authorization method) are saved in an external file called 

|  OFFICE 365: The best recipes for developers  |

2
(2020-04)



exCs.values.config that is used by the appSettings section in the App.Config Visual Studio Solution file. 
The App.Config file for the Visual Studio Solution contains the following section inside the 
<configuration> tag:

 

 
<appSettings file="c:\Temporary\exCs.values.config">
 <add key="exUserName" value="" />
 <add key="exUserPw" value="" />
 <add key="exAppId" value="" />
 <add key="exTenantId" value="" />
</appSettings>
 

 

The first line points to an external file that contains the values to be used by the App.Config file; it has the 
following form:

 

 
<appSettings >
 <add key="exUserName" value="user@domain.onmicrosoft.com" />
 <add key="exUserPw" value="VerySecurePw" />
 <add key="exAppId" value="SomeGuid" />
 <add key="exTenantId" value="SomeGuid" />
 </appSettings>
 

 

The values can be called by their name in the appSettings file, as follows:

 

 
string myExUser = ConfigurationManager.AppSettings["exUserName"];
 

 

1.2.2. Login from PowerShell @#bm$%

EWS can be used by PowerShell to reach programmatically the Exchange information. The 
Microsoft.Exchange.WebServices.dll needed to work with EWS must be installed locally.

 

 
The EWS DLLs can be downloaded from https://www.microsoft.com/en-us
/download/details.aspx?id=42951. Download the EwsManagedApi.msi 
file from that site and install it locally. The DLLs will be installed in the local directory 
C:\Program Files\Microsoft\Exchange\Web Services\2.2\.
 

 

To make the EWS DLLs available for PowerShell, they must be loaded at the beginning of the script with 
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the following statement (which must be in one continuous line):

 

 
Add-Type -Path "C:\Program Files\Microsoft\Exchange\Web Services\2.2
\Microsoft.Exchange.WebServices.dll"
 

 

The values to log in to Exchange (email address, password, application ID, and tenant ID, depending on 
the authorization method) are saved in an external file called exPs.values.config (in XML format) that is 
loaded by PowerShell at runtime. The external config file is called at the beginning of the script, as 
follows:

 

 
[xml]$configFile = get-content "C:\Projects\exPs.values.config"
 

 

And the file exPs.values.config contains the values to be used in the script; it has the following form:

 

 
<appSettings>
 <exUserName>user@domain.onmicrosoft.com</exUserName>
 <exUserPw>VerySecurePw</exUserPw>
 <exAppId>SomeGuid</exAppId>
 <exTenantId>SomeGuid</exTenantId>
</appSettings>
 

 

The values can be called by their name in the appSettings file, as follows:

 

 
$myUser = $configFile.appsettings.exUserPw
 

 

Note: If PowerShell is not allowing to run scripts, change the execution policy using the command:

 

 
Set-ExecutionPolicy -ExecutionPolicy [Unrestricted]/[RemoteSigned]/[Default]
 

 

1.2.3. Login with user credentials for EWS (Basic Authentication) and CSharp 
@#bm$%

|  OFFICE 365: The best recipes for developers  |

4
(2020-04)



Microsoft recommends not to use basic authentication (using username/password) anymore, although 
Exchange Online still accepts this type of authentication. Nevertheless, basic authentication can be a 
good option, to avoid extensive setup tasks and repetitive logins, for simple test or demonstration 
applications.

 

 
EWS Basic Authentication is becoming fully decommissioned: Microsoft has 

announced (https://developer.microsoft.com/en-us/graph/blogs
/upcoming-changes-to-exchange-web-services-ews-api-
for-office-365/) that on October 13th, 2020, it "...will stop supporting and fully 
decommission the Basic Authentication for EWS to access Exchange Online". This 
means that new or existing apps will not be able to use Basic Authentication when 
connecting to Exchange using EWS.
 

 

The function (ConnectBA) in the following recipe uses the email address and password of one user to get 
authorized in Exchange. The AutodiscoverUrl method determines the best endpoint for a given user (the 
endpoint that is closest to the user's Mailbox server); this method can be called using only the username 
parameter, but Exchange Online rejects the request as unsafe. Therefore, the 
RedirectionUrlValidationCallback routine, which is considered valid if it uses HTTPS, must be used in 
conjunction with the authentication call. Instantiating the ExchangeService with an empty constructor will 
create an instance that is bound to the latest known version of Exchange. The TraceEnabled and 
TraceFlag properties can be activated to get information from Exchange about the login process (for 
debugging purposes), and the Url method of the service instance gives back the address used by 
Exchange Online. 

 

01.001 ID File
Routines
NuGets Microsoft.Exchange.WebServices, Microsoft.Identity.Client
Ref. DLLs Microsoft.Exchange.WebServices, Microsoft.Exchange.WebServices.Auth, Microsoft.Identity.Client
Using Microsoft.Exchange.WebServices.Data, Microsoft.Identity.Client

static ExchangeService ConnectBA(string userEmail, string userPW)

{

    ExchangeService exService = new ExchangeService

    {

        Credentials = new WebCredentials(userEmail, userPW)

    };

 
    //exService.TraceEnabled = true;

    //exService.TraceFlags = TraceFlags.All;

 
    exService.AutodiscoverUrl(userEmail, RedirectionUrlValidationCallback);

    //Console.WriteLine(exService.Url);

 
    return exService;

}
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static bool RedirectionUrlValidationCallback(string redirectionUrl)

{

    bool validationResult = false;

 
    Uri redirectionUri = new Uri(redirectionUrl);

    if (redirectionUri.Scheme == "https")

    {

        validationResult = true;

    }

 
    return validationResult;

}

 

The authorization method can be called from any other routine as follows:

 

01.002 ID File
Routines
NuGets Microsoft.Exchange.WebServices, Microsoft.Identity.Client
Ref. DLLs Microsoft.Exchange.WebServices, Microsoft.Exchange.WebServices.Auth, Microsoft.Identity.Client
Using Microsoft.Exchange.WebServices.Data, Microsoft.Identity.Client

static void Main(string[] args)

{

    ExchangeService myExService = ConnectBA(

                        ConfigurationManager.AppSettings["exUserName"],

                        ConfigurationManager.AppSettings["exUserPw"]);

 
    CallEWSTest(myExService);

}

 

1.2.4. Login with oAuth for EWS and CSharp @#bm$%

Although the fact that oAuth relies on a third-party authentication provider, that the standard is more 
difficult to implement than basic authentication, and that oAuth requires another layer of integration (the 
application will need both, the authentication provider and the Exchange server), Microsoft recommends 
using oAuth instead of basic authentication because of the advantage in security.

Since Office 365 uses Azure Active Directory (AAD) as authentication provider, any application that 
wants to use Office Exchange EWS oAuth authentication must have an application ID issued by AAD. 
The following steps indicate how to register one application as a public client with Azure Active Directory.

1 - Using a browser, navigate to the main administration page of Office 365 
(https://admin.microsoft.com or through https://portal.office.com), log in with an 
administrator account, and open the Azure Active Directory Admin Center.

|  OFFICE 365: The best recipes for developers  |

6
(2020-04)

https://admin.microsoft.com/
https://portal.office.com/


2 - Click on Azure Active Directory in the menu on the left side, and then on App registrations (Manage 
section). Use the New registration button. 

3 - Assign a name to the registration, select Accounts in this organizational directory only in the 
Supported account types section, and select the Public client/native (mobile & desktop) option in the 
Redirect Uri section. Write the value urn:ietf:wg:oauth:2.0:oob on the textbox at the side of the Redirect 
Uri section. Use the Register button to save the registration.

4 - The registration is complete. Copy the values given in Application (client) ID and Directory (tenant) 
ID to use it in the source code of the application to be developed.

The Visual Studio solution to use the authentication from oAuth (a console applications in this chapter) 
requires a using directive to Microsoft.Identity.Client.

 

 
The DLLs to work with the Microsoft.Identity.Client can be installed by the NuGet 
Microsoft.Identity.Client by Microsoft (https://www.nuget.org/packages
/Microsoft. Identity.Client/) directly from Visual Studio.
 

 

The function ConnectOA in the following recipe uses the Azure AD registration client and tenant ID to get 
authorized in Exchange.

 

01.003 ID File
Routines
NuGets Microsoft.Exchange.WebServices, Microsoft.Identity.Client
Ref. DLLs Microsoft.Exchange.WebServices, Microsoft.Exchange.WebServices.Auth, Microsoft.Identity.Client
Using Microsoft.Exchange.WebServices.Data, Microsoft.Identity.Client

static async System.Threading.Tasks.Task<ExchangeService> ConnectOA(

                                                    string AppId, string TenId)

{

    ExchangeService exService = new ExchangeService();

 
    PublicClientApplicationOptions pcaOptions = new PublicClientApplicationOptions

    {

        ClientId = AppId,

        TenantId = TenId

    };

 
    IPublicClientApplication pcaBuilder = PublicClientApplicationBuilder

        .CreateWithApplicationOptions(pcaOptions).Build();

 
    string[] exScope = new string[] {

                    "https://outlook.office.com/EWS.AccessAsUser.All" };

 
    AuthenticationResult authToken = await

                      pcaBuilder.AcquireTokenInteractive(exScope).ExecuteAsync();
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    exService.Url = new Uri("https://outlook.office365.com/EWS/Exchange.asmx");

    exService.Credentials = new OAuthCredentials(authToken.AccessToken);

 
    return await System.Threading.Tasks.Task.FromResult(exService);

}

 

The first time that the application runs, a standard login window will appear requiring the account data of 
the user that made the registration. After login, the window will ask for permissions (Access your 
mailboxes, Maintain access to data you have given it access to and View your basic profile). 
Subsequently, the application will ask only for the user login, not for the permissions.

Because the connection routine is asynchronous, use the following code to call it.

 

01.004 ID File
Routines
NuGets Microsoft.Exchange.WebServices, Microsoft.Identity.Client
Ref. DLLs Microsoft.Exchange.WebServices, Microsoft.Exchange.WebServices.Auth, Microsoft.Identity.Client
Using Microsoft.Exchange.WebServices.Data, Microsoft.Identity.Client

static void Main(string[] args)

{

    ExchangeService myExService = ConnectOA(

                        ConfigurationManager.AppSettings["exAppId"],

                        ConfigurationManager.AppSettings["exTenantId"]).

                                                    GetAwaiter().GetResult();

 
    CallEWSTest(myExService);

}

 

 
The use of oAuth to get access to Exchange is faster than the use of base authentication, 
especially because it is not necessary to use the auto-discovery method.
 

 

1.2.5. Login for EWS with PowerShell and Basic Authentication @#bm$%

The ConnectPsEwsBA routine in the next recipe takes care of login in Exchange using Basic 
Authentication with PowerShell.

 

01.005 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll
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Function ConnectPsEwsBA()

{

    $ExService = New-Object Microsoft.Exchange.WebServices.Data.ExchangeService

    $ExService.Credentials = New-Object

Microsoft.Exchange.WebServices.Data.WebCredentials(`

        $configFile.appsettings.exUserName, $configFile.appsettings.exUserPw)

    $ExService.Url = new-object Uri("https://outlook.office365.com/EWS/Exchange.asmx");

    #$ExService.TraceEnabled = $true

    #$ExService.TraceFlags = [Microsoft.Exchange.WebServices.Data.TraceFlags]::All

    $ExService.AutodiscoverUrl($configFile.appsettings.exUserName, {$true})

 
    return $ExService

}

 

See section 1.2.2. to get details about login with PowerShell. The TraceEnabled and TraceFlag properties 
can be activated at any moment to get information regarding the internal working of Exchange when 
logging in.

To call the function, use code similar to the next example.

 

01.006 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll

##==> EWS Basic Authorization

Add-Type -Path "C:\Program Files\Microsoft\Exchange\Web Services\2.2

\Microsoft.Exchange.WebServices.dll"

$ExService = ConnectPsEwsBA

 
CallEWSTest $ExService  #Calling any function

 

1.2.6. Login for EWS with PowerShell and oAuth @#bm$%

Using oAuth from PowerShell is not a trivial or easy endeavor. But because Basic Authentication is being 
closed for Exchange, it will be obligatory to use in some years. 

For this book, we use the GenericOauthEWS.ps1 login routine developed by Glen Scales 
(glenscales@yahoo.com, https://gsexdev.blogspot.com/), that can be downloaded from his GitHub 
repository https://github.com/gscales/Powershell-Scripts/blob/master
/GenericOauthEWS.ps1. The module is fully described in the article https://gsexdev.blogspot.com
/2018/08/dependency-free-generic-ews-oauth.html. 
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The EWS DLLs required to work with oAuth and Exchange can be downloaded from 
https://www.microsoft.com/en-us/download
/details.aspx?id=42951. Download the EwsManagedApi.msi file from that 
site and install it locally. The DLLs will be installed in the local directory C:\Program 
Files\Microsoft\Exchange\Web Services\2.2\.
 

 

To use the module, first, load it in the script and then call the Connect-Exchange method. Use the return 
value to get any access to the required information.

 

01.007 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll

##==> EWS oAuth Authorization

Import-Module .\GenericOauthEWS.ps1 -Force

#Test-EWSConnection -MailboxName $configFile.appsettings.exUserName

$ExService = Connect-Exchange `

                $configFile.appsettings.exUserName "" $configFile.appsettings.exAppId

 
CallEWSTest $ExService  #Calling any function

 

The module has a Test-EWSConnection method that can be used to check the connection with 
Exchange and get some information about the account.

 

1.2.7. Login using the Exchange Online PowerShell @#bm$%

To work with Exchange Online PowerShell, use Windows PowerShell on the local computer to create a 
remote PowerShell session with Exchange Online, providing the Office 365 credentials, the required 
connection settings, and then import the Exchange Online cmdlets into the local Windows PowerShell 
session.

The following function automates the complete process.

 

01.008 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll

Function ConnectPsOnlBA()

{

    [SecureString]$securePW = ConvertTo-SecureString -String `

                $configFile.appsettings.exUserPw -AsPlainText -Force

    $myCredentials = New-Object System.Management.Automation.PSCredential -ArgumentList `
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                $configFile.appsettings.exUserName, $securePW

    $mySession = New-PSSession -ConfigurationName Microsoft.Exchange -ConnectionUri `

                https://outlook.office365.com/powershell-liveid/ -Authentication Basic `

                -AllowRedirection -Credential $myCredentials

    Import-PSSession $mySession -AllowClobber

}

 

To use the remote session, utilize the function as follows.

 

01.009 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll

##==> Exchange Online PowerShell Basic Authorization

ConnectPsOnlBA

 
Get-Mailbox  #Calling any cmdlet
 
$currentSession = Get-PSSession

Remove-PSSession -Session $currentSession

 

The remote session is killed at the end of the code for security concerns.

 

 
Microsoft has announced that Remote PowerShell for Exchange will be closed on 

October 13th, 2020 (https://techcommunity.microsoft.com/t5/blogs/ 
blogarticleprintpage/blog-id/Exchange/article-id/27095). Microsoft 
recommends using the multi-factor authentication PowerShell module or the PowerShell 
within Azure Cloud Shell to use PowerShell with Exchange, as the article mentions.
 

 

1.3. Programming Exchange with EWS and CSharp @#bm$%

To work with EWS in Visual Studio, the development computer must have the 
Microsoft.Exchange.WebServices and Microsoft.Exchange.WebServices.Auth DLLs installed.

 

 
The EWS DLLs can be installed by the NuGet Microsoft.Exchange.WebServices by 
Microsoft (https://www.nuget.org/packages/Microsoft. 
Exchange.WebServices/) directly from Visual Studio.
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SharePoint Online Site 
Collections and Webs 
 
 

 

8. SharePoint Online Site 
Collections and Webs @#bm$%

 For SharePoint Online, the Site Collection is the biggest container 
for maintaining information. A Site Collection, as its name 
indicates, contains at least one site (the root Web), but can host a 
complete structure of subsites (the SharePoint Webs).
A Site Collection offers site users unified navigation, branding, 
security, and search tools as a cohesive website experience.
The following recipes should mostly work as well for the modern 
SharePoint user experience as for the classic user experience. 
The cases where they use different methods will also be explained 
in the text.
 
 

 

|  OFFICE 365: The best recipes for developers  |

245
(2020-04)



8.1. Introduction @#bm$%

This chapter shows the basic CRUD (Create, Read, Update, Delete) recipes to work with Site 
Collections and Webs, using the SharePoint Client Object Model (CSOM), PnP, and PowerShell. Extra 
information about security, configuration, etc., is also included.

 

 
All recipes use the login methods presented in Chapter 06, and the routine's code is not 
repeated in this chapter. Please review Chapter 06 for login code and configuration 
instruction.
 

 

All the recipes have been developed for, and tested with, Modern SharePoint Site Collections. Because 
almost all the APIs were developed originally to work with the Classic SharePoint user experience, the 
recipes will work generally without problems as well for the old experience of Site Collections and Webs.

 

8.2. Operations for modern Site Collections with the Client Side 
Object Model (CSharp) @#bm$%

The SharePoint Client Side Object Model (CSOM) is designed to work with SharePoint elements from 
the Site Collection level to the lowest architecture elements (Items and Documents). For this reason, the 
CSOM is not able to work at the tenant level, and it has no methods to, for example, create or 
enumerate Site Collections. To work with the highest rank of elements in the SharePoint hierarchy, it is 
necessary to use the Microsoft.Online.SharePoint namespace. The necessary assemblies to do that 
are also installed, together with the Microsoft.SharePoint.Client assemblies, when the NuGet 
Microsoft.SharePointOnline.CSOM is added to the Visual Studio Solution. 

The following recipes will use both namespaces indiscriminately. When operations at tenant level are 
used, it is necessary to reference the administration Site of SharePoint Online, and use a SharePoint 
administrator account. The login routines are the same (as indicated in Chapter 06) for employing the 
administration site (http://domain-admin.sharepoint.com) or a normal Site Collection 
(http://domain.sharepoint.com/sites/sitecoll); the only difference is the URL to use.

 

8.2.1. Creation of modern Site Collections - CSOM, CSharp@#bm$%

Only SharePoint administrator accounts can create Site Collections in SharePoint Online. There are two 
types of Site Collections: based on the modern SharePoint user experience and based on the classic 
experience. How to create modern team sites programmatically depends on whether it needs to be 
connected to an Exchange Group or not.

For non-group connected sites, a call to a CSOM method for creating sites, and passing in the template 
identifier STS#3 (for a Team Site) or SITEPAGEPUBLISHING#0 (for a Communication Site) will suffice. 
For classic Site Collections, use any of the other template identifiers. 
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08.001 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomCreateOneSiteCollection(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    string myUser = ConfigurationManager.AppSettings["spUserName"];

    SiteCreationProperties mySiteCreationProps = new SiteCreationProperties

    {

        Url = ConfigurationManager.AppSettings["spBaseUrl"] +

                                        "/sites/NewSiteCollectionModernCsCsom01",

        Title = "NewSiteCollectionModernCsCsom01",

        Owner = ConfigurationManager.AppSettings["spUserName"],

        Template = "STS#3",

        StorageMaximumLevel = 100,

        UserCodeMaximumLevel = 50

    };

 
    SpoOperation myOps = myTenant.CreateSite(mySiteCreationProps);

    spAdminCtx.Load(myOps, ic => ic.IsComplete);

    spAdminCtx.ExecuteQuery();

 
    while (myOps.IsComplete == false)

    {

        System.Threading.Thread.Sleep(5000);

        myOps.RefreshLoad();

        spAdminCtx.ExecuteQuery();

    }

}

 

For a Group connected modern site, create an Office 365 group first, and determine the name of the 
team site to connect to, as shown in the next routine.

 

08.002 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomCreateGroupForSite(ClientContext spAdminCtx)

{

    string[] myOwners = new string[] { "user@domain.onmicrosoft.com" };

    GroupCreationParams myGroupParams = new GroupCreationParams(spAdminCtx);

    myGroupParams.Owners = myOwners;

    //GroupCreationParams
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    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.CreateGroupForSite(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                        "/sites/NewSiteCollectionModernCsCsom01",

        "GroupForNewSiteCollectionModernCsCsom01",

        "GroupForNewSiteCollAlias",

        true,

        myGroupParams);

 
    spAdminCtx.ExecuteQuery();

}

 

To find the identifiers for the different types of Site Collections, use the GetSPOTenantWebTemplates 
method, indicating the language location identifier.

 

08.003 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomFindWebTemplates(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    SPOTenantWebTemplateCollection myTemplates =

                            myTenant.GetSPOTenantWebTemplates(1033, 0);

    spAdminCtx.Load(myTemplates);

    spAdminCtx.ExecuteQuery();

 
    foreach (SPOTenantWebTemplate oneTemplate in myTemplates)

    {

        Console.WriteLine(oneTemplate.Name + " - " + oneTemplate.Title);

    }

}

 

 

8.2.2. Enumeration of Site Collections in the Tenant - CSOM, CSharp @#bm$%

There are no methods at the moment to enumerate modern Site Collections in SharePoint Online. To 
get the classic Site Collections in the tenant, use the GetSiteProperties method.
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08.004 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomReadAllSiteCollections(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.GetSiteProperties(0, true);

 
    SPOSitePropertiesEnumerable myProps = myTenant.GetSiteProperties(0, true);

    spAdminCtx.Load(myProps);

    spAdminCtx.ExecuteQuery();

 
    foreach (var oneSiteColl in myProps)

    {

        Console.WriteLine(oneSiteColl.Title + " - " + oneSiteColl.Url);

    }

}

 

8.2.3. Delete Site Collections from the Tenant - CSOM, CSharp@#bm$%

The RemoveSite method deletes a Site Collection from the tenant if it has no connection to an Exchange 
group.

 

08.005 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomRemoveSiteCollection(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.RemoveSite(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                        "/sites/NewSiteCollectionModernCsCsom01");

 
    spAdminCtx.ExecuteQuery();

}

 

To recover a Site Collection that has been deleted to the Recycle Bin, use the RestoreDeletedSite 
method. Take into consideration that the Recycle Bin removes its information automatically after some 
time.
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08.006 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomRestoreSiteCollection(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.RestoreDeletedSite(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                        "/sites/NewSiteCollectionModernCsCsom01");

 
    spAdminCtx.ExecuteQuery();

}

 

A Site Collection can be also deleted from the Recycle Bin using the RemoveDeletedSite method. That 
could be necessary to create a new Site Collection with the same name as an already deleted Site 
Collection.

 

08.007 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomRemoveDeletedSiteCollection(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.RemoveDeletedSite(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                        "/sites/NewSiteCollectionModernCsCsom01");

 
    spAdminCtx.ExecuteQuery();

}

 

8.2.4. Add users with rights to one Site Collection - CSOM, CSharp@#bm$%

The isSiteAdministrator parameter (last parameter) in the SetSiteAdmin method indicates if a newly 
added account to the security settings of the Site Collection is an administrator.
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08.008 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomSetAdministratorSiteCollection(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.SetSiteAdmin(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                        "/sites/NewSiteCollectionModernCsCsom01",

        "user@domain.onmicrosoft.com",

        true);

 
    spAdminCtx.ExecuteQuery();

}

 

8.2.5. Working with modern Hub Sites - CSOM, CSharp@#bm$%

A modern Hub Site Collection is a logical aggregator of Site Collections. Any modern Teams Site 
Collection can be elevated to Hub Site Collection.

 

 

08.009 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomRegisterAsHubSiteCollection(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.RegisterHubSite(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                     "/sites/NewHubSiteCollCsCsom");

 
    spAdminCtx.ExecuteQuery();

}

 

 

In a similar way, a Site Collection can be demoted from Hub Site Collection back to normal modern Site 
Collection.
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08.010 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomUnregisterAsHubSiteCollection(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.UnregisterHubSite(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                     "/sites/NewHubSiteCollCsCsom");

 
    spAdminCtx.ExecuteQuery();

}

 

The GetHubSitePropertiesByUrl method gets the current information configured for a Hub Site 
Collection. There is also a GetHubSitePropertiesById to recover the Hub information given its identifier.

 

08.011 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomGetHubSiteCollectionProperties(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    HubSiteProperties myProps = myTenant.GetHubSitePropertiesByUrl(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                     "/sites/NewHubSiteCollCsCsom");

 
    spAdminCtx.Load(myProps);

    spAdminCtx.ExecuteQuery();

 
    Console.WriteLine(myProps.Title);

}

 

 

And the same method can be used to update the metadata of the Hub.
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08.012 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomUpdateHubSiteCollectionProperties(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    HubSiteProperties myProps = myTenant.GetHubSitePropertiesByUrl(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                     "/sites/NewHubSiteCollCsCsom");

 
    spAdminCtx.Load(myProps);

    spAdminCtx.ExecuteQuery();

 
    myProps.Title = myProps.Title + "_Updated";

    myProps.Update();

 
    spAdminCtx.Load(myProps);

    spAdminCtx.ExecuteQuery();

 
    Console.WriteLine(myProps.Title);

}

 

A normal classic Teams Site Collection can be added to the collection of Site Collections managed by a 
Hub Site Collection.

 

08.013 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomAddSiteToHubSiteCollection(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.ConnectSiteToHubSite(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                     "/sites/NewSiteForHub",

    ConfigurationManager.AppSettings["spBaseUrl"] +

                                     "/sites/NewHubSiteCollCsCsom");

    spAdminCtx.ExecuteQuery();

}
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Any Site Collection that is in the collection of sites managed by a Hub can also be removed from the 
Hub.

 

08.014 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomremoveSiteFromHubSiteCollection(ClientContext spAdminCtx)

{

    Tenant myTenant = new Tenant(spAdminCtx);

    myTenant.DisconnectSiteFromHubSite(

        ConfigurationManager.AppSettings["spBaseUrl"] +

                                     "/sites/NewSiteForHub");

    spAdminCtx.ExecuteQuery();

}

 

8.3. Operations for Webs in a Site Collection with the Client Side 
Object Model (CSharp) @#bm$%

 

8.3.1. Create Web Sites in a Site Collection - CSOM, CSharp @#bm$%

Use the WebCreationInformation method to configure the parameters of a new Web Site and add it to 
the Webs collection of the Site Collection. This recipe can create modern and classic experience Webs.

 

08.015 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomCreateOneWebInSiteCollection(ClientContext spCtx)

{

    Site mySite = spCtx.Site;

 
    WebCreationInformation myWebCreationInfo = new WebCreationInformation

    {

        Url = "NewWebSiteModernCsCsom",

        Title = "NewWebSiteModernCsCsom",

        Description = "NewWebSiteModernCsCsom Description",

        UseSamePermissionsAsParentSite = true,

        WebTemplate = "STS#3",

        Language = 1033

    };
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    Web myWeb = mySite.RootWeb.Webs.Add(myWebCreationInfo);

    spCtx.ExecuteQuery();

}

 

8.3.2. Find the Webs of a Site Collection - CSOM, CSharp@#bm$%

To enumerate all the Webs in a Site Collection, recall first the Site object, and then loop through each 
Web in the Webs collection.

 

08.016 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomGetWebsInSiteCollection(ClientContext spCtx)

{

    Site mySite = spCtx.Site;

 
    WebCollection myWebs = mySite.RootWeb.Webs;

    spCtx.Load(myWebs);

    spCtx.ExecuteQuery();

 
    foreach (Web oneWeb in myWebs)

    {

        Console.WriteLine(oneWeb.Title + " - " + oneWeb.Url + " - " + oneWeb.Id);

    }

}

 

To find only one of the Webs in the Site Collection, create a context using the URL of the Web directly. 
Then, all its properties can be read.

 

08.017 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomGetOneWebInSiteCollection()

{

    string myWebFullUrl = ConfigurationManager.AppSettings["spUrl"] +

                                                    "/NewWebSiteModernCsCsom";

    ClientContext spCtx = LoginCsom(myWebFullUrl);
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Microsoft Teams
 

 

14. Microsoft Teams @#bm$%

 Microsoft Teams is the group collaboration application in the Office 
365 suite. It helps teams to work together from one place, 
integrating conversations, files, notes, and multiple other internal 
and external tools. Technically speaking, Microsoft Teams is a 
combination of Office 365 Exchange Groups (email, calendar, 
meetings), SharePoint Online (Lists, Libraries, Sites, OneDrive), 
and Skype for Business (chat, calls, video). Additionally, it is an 
open based system that allows integrating external, commercial 
and customized applications in the same user interface.
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14.1. Introduction @#bm$% 

Microsoft announced Teams in November 2016, and launched the service worldwide on 14 March 2017. 
Since then, the development of the application has been stormy, adding new functionality almost every 
week. At the beginning, Teams was no more than the combination of some functionality of Exchange 
(Groups) and SharePoint (Libraries) in one user interface, and certain experimental extensibility options. 
But because Microsoft sees Teams as a key component in its strategy for Office 365, the development 
of new functionality and interoperability has been very fast. In May 2017, Microsoft announced Microsoft 
Teams was replacing Microsoft Classroom in Office 365 Education; in September 2017, it was made 
known that it will replace Skype for Business, and in 2018, that StaffHub will be retired and its 
functionality moved to Teams.

While Teams was engulfing other products, its ability to interact with the external world was also 
improving. Initially, it was only possible to add bots and a couple of connectors with external 
applications, but now, it is interoperable with hundreds of applications, and developers can create new 
connectors, message extensions, Webhooks, and SharePoint Framework components. Also, the 
support for Microsoft Graph (using REST services) is getting better and, in April 2019, the general 
availability of the Microsoft Teams PowerShell module was announced.

 

 
Although Teams is available for Office 365 Business Essentials, Business Premium, 
and Enterprise E1, E3, and E5 plans, if you need a test and development Teams 
instance, it is possible to create a free tenant with some limitations, but fully functional, 
from https://products.office.com/en-us/microsoft-teams/free.
 

 

There are several ways to extend the functionality of Teams:

- Tabs that provide a full-screen web experience, embedded in the main presentation zone of the 
Teams user interface.

- Bots that interact with members of a conversation through chat, and can respond to events.
- Webhooks and Connectors that enable external services to send and receive messages.
- Messaging extensions that allow users to interact with Web services through buttons and forms 

from the Teams client user interface. 
- SharePoint Framework (SPFx) components that are created as SharePoint Client WebParts.

Teams is not a hosting service: The customizations added to Teams are always hosted externally. The 
package to add the functionality to Teams contains a manifest with metadata about the app (name, 
icons, etc.), and pointers to the web services of the app. Also, take into consideration that any 
functionality exposed in a Microsoft Teams app is publicly available over the internet. If the app provides 
access to confidential or protected information, the app self should take care of authentication and 
authorization.

 

14.2. Teams configuration for developing @#bm$% 

Teams can be activated for all users from the Central Administration of Office 365. Also, the access can 
be configured by the user if necessary.
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For developing, sideloading (installation of applications without using Microsoft's application-distribution 
method) must be activated at three levels before it can be used:

- From the Teams Admin Center, open the Terms apps section, click on Setup policies, and open 
the Global (Org-wide default) policy. Flip the Upload custom apps button to On and save the 
configuration.

- From the Teams Admin Center, open the Terms apps section and use the Org-wide app settings 
button. Move the Custom apps selector to On.

- Each Team has the option Allow members to upload custom apps in the Manage Team - Settings 
- Member permissions window that should be activated.

 

14.3. Developing for Teams and development tools @#bm$%

A customization for Teams consists of a web application of a series of JavaScript files that must be 
hosted outside Teams, and a manifest that ensures the liaison between the external application and 
Teams. In fact, any web application could, in theory, be connected to Teams.

The main development tool to create new functionality for Teams is Visual Studio, even though Visual 
Studio Code can eventually be used as well. Microsoft has made some tools available to facilitate the 
development of customizations for Teams. Additionally, other third-party tools can help, especially for 
debugging.

 

14.3.1. Location of the Teams objects @#bm$%

The components available in the Teams client are physically located in SharePoint, Exchange, and 
Skype:

Chat is formally linked to the Skype server. Skype is being replaced by Teams, and its complete 
functionality will be available in Teams.

Teams is physically one Site Collections in SharePoint, plus one Group in Exchange. They can be 
reached programmatically using the APIs for Teams, SharePoint, and Exchange.

Each Team has different components:

- Channels. There are two types of Channels: 
o Standard (Public) Channels that use the base SharePoint Site Collection and Exchange 

Group created for the Team.
o Private Channels that use the same Exchange Group as the Team, and a separated 

SharePoint Site Collection. This Site Collection is not visible from the SharePoint Central 
Administration page, but it can be reached programmatically as any other SharePoint Site 
Collection. 

Each Channel is formed of three default components:

- Conversations, that are saved in the Exchange Group. The Group API doesn't allow access to the 
Conversations.

- Files, that are saved in the Documents Library of the SharePoint root site in the Site Collection. 
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Each Channel has one folder in the Library to save its files. Full programming access granted 
using the SharePoint APIs.

- Wikies, saved as .mht files (one for each Wiki) in the Teams Wiki Data Library of SharePoint. The 
.mht files are MIME HTML formatted files which save HTML, images and other linked resources 
into a single file. The SharePoint APIs allow access to these files.

Calendar in Teams is the calendar of the user, saved in Exchange. It is reachable programmatically 
using the Exchange APIs.

 

14.3.2. Teams App Studio @#bm$%

The Teams App Studio is a tool to help you build apps for Teams. It facilitates to start developing or 
integrating own service, streamlines the creation of the manifest for the apps, and provides other tools 
like a Card Editor and a React control library.

Teams App Studio is also an app which can be found in the Teams store. Click on the Apps button in the 
Teams client and search for App Studio in the store. After installing the app, it will be reachable from the 
ellipse button (...) on the left side menu of the user interface.

 

 
Microsoft has announced that the React control library in App Studio will be 
deprecated in the future. It is recommended to use the Fluent-UI react controls from 
https://microsoft.github.io/fluent-ui-react/.
 

 

 

14.3.3. Teams Developer Preview @#bm$%

The Teams Developer Preview is a Microsoft public program for developers that provides early access to 
unreleased features in Teams. This allows to explore and test upcoming features for potential inclusion 
in Microsoft Teams. They are provided for testing and exploration purposes only. They should not be 
used in production applications.

The Developer Preview can be enabled per Teams Client; thus, it doesn't affect the entire organization, 
only the instance (Teams Desktop or Teams Web application) where it is activated.

To activate the Developer Preview on a computer or web client, the uploading of apps must be activated 
as described at the beginning of the section. Click on the profile button (upper right corner of the Teams 
interface, the button with the picture of the user) to display the Teams menu, and then select About and 
click on Developer preview to turn it on or off.

The manifest used for customized components must have the property manifestVersion with the value 
devPreview. The functionality available changes very often and sometimes it is not documented by 
Microsoft. 
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Using the devPreview schema disallows the use of App Studio and the possibility to 
upload apps for testing. To upload an application, click the More apps icon on the app 
bar, then select the Upload a custom app link. This method only permits to upload a 
zipped version of the app package.
 

 

 

14.3.4. ngrok @#bm$%

To load custom Team apps, the app must be available from the internet; it cannot be used running from 
a local IIS. There are two possibilities to make the Teams app in development reachable from the 
internet: Hosting the app in a public server, such as Microsoft Azure, or creating a tunnel to the local 
process on the development machine using ngrok, an application (available for Windows, Linux and 
Mac) that creates public URLs for testing of software that runs in a local development computer.

 

 
Tunneling using ngrok is valid for testing running the app on the local machine, and 
creates a tunnel to it through a public web endpoint, but it is not suitable for production. 
When using the Teams App Studio to create the manifest, a message will appear 
indicating this. The message can be voided for testing, but not when the application will 
be deployed for production.
 

 

ngrok is a free tool that can be downloaded from https://ngrok.com/download. Unzip ngrok to a 
directory in the development computer. Run the Teams app under development from Visual Studio: The 
app will be available locally from a URL like http://localhost:3333. Open a PowerShell console, 
relocate the pointer to the folder where ngrok is unzipped, and run it using the syntax:

 

 
 .\ngrok.exe http 3333 -host-header=localhost:3333
 

 

Ensure that you use the same port for the http parameter and the localhost parameter. The console will 
respond indicating the external URL generated from ngrok in the form of 
http(s)://[identifier].ngrok.io. For the free version of ngrok, a session can expand for max 8 
hours (it is not necessary to register in the ngrok site to use the free version). From this moment, the 
application available locally under the URL http://localhost:3333 will be also available from the 
public internet URL http(s)://[identifier].ngrok.io. To stop the tunnel, use the command Ctrl-c.

ngrok provides a real-time web user interface as well, to gather all the HTTP traffic running over the 
tunnel. After starting ngrok, open the URL given under Web Interface in the PowerShell window (for 
example, http://127.0.0.1:4040) in a web browser to review all the traffic details.
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To host Webs for testing or production, the Azure Web Apps Service 
(https://azure.microsoft.com/en-us/services/app-service/web/) 
provides ready to use hosting environments, where all the infrastructure is delivered by 
Microsoft. There are diverse price tiers, including one for free.
 

 

14.3.5. Cards @#bm$%

Cards are an open format that enables developers to exchange content for user interfaces in a 
commonly and consistently way. Cards are used in messages, bots, emails, and any kind of application 
that needs to show information for users. There are eight types of Cards available for Teams: Adaptive, 
Hero, List, Office 365 Connector, Receipt, Signin, Thumbnail, and Collections. No type can be used for 
any other type of application: Teams Connectors, for example, only accept Cards of the Office 365 
Connector type.

Cards are described as JSON objects with a defined syntax. Microsoft provides extensive information 
about Adaptive Cards in its site https://docs.microsoft.com/en-us/adaptive-cards/.

 

 
The Teams App Studio tool (see section 3.1 in this chapter) contains a section to 
create the JSON for Hero, Thumbnail, and Adaptive Cards. It can inclusively 
generate the CSharp code to insert directly in the code for Teams apps.
 

 

For Message and Adaptive Cards, the Microsoft site 
https://messagecardplayground.azurewebsites.net offers several examples showing the JSON 
code and the Card result. This site is becoming replaced by the Microsoft site 
https://amdesigner.azurewebsites.net, that also has several examples and a Card generator but 
only for Adaptive Cards.

 

 
Working from CSharp, it is easier to use the NuGet AdaptiveCards than to parse JSON 
code manually (https://www.nuget.org/packages/AdaptiveCards/). This is a 
library that implements classes for building and serializing Adaptive Card objects from 
code (only for Adaptive Cards).
 

 

14.4. Teams Tabs @#bm$%

Tabs are Web pages embedded in Microsoft Teams. There are two types of Tabs available in Teams:

- Personal Tabs are scoped to a single user. They are pinned to the left navigation bar, under the 
ellipse (...) button.

- Channel/Group Tabs deliver content to channels and group chats. They are pinned to the 
top-horizontal bar (Tabs bar).

The Web pages to be used for Tabs must be hosted as HTTPS (secure socket layers) and able to be 
embedded in an iFrame by the Teams client.
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14.4.1. Personal Tabs @#bm$%

Fundamentally, Tabs with a personal scope consist of Web pages that are framed within the Teams 
client, and that are accessible after installation from the ellipse menu at the left side of the Teams 
interface.

Any public Web page can be set as Personal Tab. For the next example, Visual Studio is used to create 
a .NET Framework ASP.NET Web Forms application, but an MVC application using .NET Framework or 
.NET Core would suffice as well.

Start Visual Studio and create a new solution of the type ASP.NET Web Application (.Net Framework). 
Select Empty as the type project, select Web Forms in the Core references menu, and deselect 
Configure for HTTPS. 

Add a new Web Form called GenerateGuid.aspx to the solution. This will be the page with the 
functionality for the Tab. There are one button and two labels in the aspx page, one for the new GUID 
and other to show information from the context. The styles from the .css file are used for styling.

 

 

14.001 ID File

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="GenerateGuid.aspx.cs"

    Inherits="KKJA.GenerateGuid" %>

 
<!DOCTYPE html>

 
<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

    <title></title>

    <script src="https://statics.teams.microsoft.com/sdk/v1.0/js/MicrosoftTeams.min.js"

        type="text/javascript"></script>

    <script src="GenerateAppScripts.js" type="text/javascript"></script>

    <link rel="stylesheet" href="GenerateThemes.css" type="text/css" />

</head>

<body class="theme-light">

    <form id="form1" runat="server">

        <div class="surface font-semibold font-title"><h2>Generate a new GUID</h2></div>

        <div>

            <p>

                <asp:Button ID="btnGenerateGuid" runat="server" Text="Generate"

                    OnClick="btnGenerateGuid_Click" />

            </p>

            <p class="surface">

                <asp:Label ID="lblNewGuid" runat="server" Text=""></asp:Label>

                <asp:Label ID="lblContextInfo" runat="server" Text=""></asp:Label>

            </p>

        </div>

    </form>
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</body>

</html>

 

The .aspx page has a reference to the MicrosoftTeams.min.js file from the team's Content Distribution 
Network (CDN). This file belongs to the Team's JavaScript client SDK, a part of the Microsoft Teams 
developer platform, and it contains methods to facilitate the integration of custom services with Teams. 
There is also a reference to the custom stylesheet file GenerateThemes.css that contains all the styling 
classes for the Teams themes, and a reference to the GenerateAppScripts.js containing the JavaScript 
routine that initializes the Team's client SDK, checks the initial theme chosen by the user and maintains 
it applied, defines the event handler for the change of themes, and sets a theme when the change of 
theme event is detected. The context contains some information about Teams, the user and the session; 
the label lblContextInfo shows, for example, the value of the loginHint property present in the context.

 

14.002 ID File
Other Modules MicrosoftTeams.min.js

(function () {

    'use strict';

 
    microsoftTeams.initialize();

 
    microsoftTeams.getContext(function (context) {

        if (context && context.theme) {

            document.getElementById('lblContextInfo').innerText = context.loginHint;

            setTheme(context.theme);

        }

    });

 
    microsoftTeams.registerOnThemeChangeHandler(function (theme) {

        setTheme(theme);

    });

 
    function setTheme(theme) {

        if (theme) {

        // Possible values for theme: 'default', 'light', 'dark' and 'contrast'

        document.body.className = 'theme-' + (theme === 'default' ? 'light' : theme);

        }

    }

})();

 

 
The GenerateThemes.css file is too long (more than 1200 lines code) to be printed in 
the book. You can find it in the KKJA repo in the book's GitHub site.
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The code-behind file for the .aspx page generates a GUID when the button is used and shows its value 
in the label.

 

14.003 ID File
Routines
NuGets
Ref. DLLs
Using

protected void btnGenerateGuid_Click(object sender, EventArgs e)

{

    lblNewGuid.Text = Guid.NewGuid().ToString();

}

 

Two other aspx pages are necessary: One to show the privacy statement, and another for the terms of 
use. In this example, there is only some text in the pages, but any kind of functionality can be used.

 

14.004 ID File

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Privacy.aspx.cs"

    Inherits="KKJA.Privacy" %>

 
<!DOCTYPE html>

 
<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

    <title></title>

    <script src="https://statics.teams.microsoft.com/sdk/v1.0/js/MicrosoftTeams.min.js"

        type="text/javascript"></script>

    <script src="GenerateAppScripts.js" type="text/javascript"></script>

    <link rel="stylesheet" href="GenerateThemes.css" type="text/css" />

</head>

<body class="theme-light">

    <form id="form1" runat="server">

        <div>

            This is the Privacy Statement page

        </div>

    </form>

</body>

</html>
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14.005 ID File

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Terms.aspx.cs"

Inherits="KKJA.Terms" %>

 
<!DOCTYPE html>

 
<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

    <title></title>

    <script src="https://statics.teams.microsoft.com/sdk/v1.0/js/MicrosoftTeams.min.js"

        type="text/javascript"></script>

    <script src="GenerateAppScripts.js" type="text/javascript"></script>

    <link rel="stylesheet" href="GenerateThemes.css" type="text/css" />

</head>

<body class="theme-light">

    <form id="form1" runat="server">

        <div>

            This is the Terms of Use page

        </div>

    </form>

</body>

</html>

 

Run the project from Visual Studio and take note of the port used by IIS Express. Start ngrok as 
indicated in section 4.3 of this chapter, using the port number from IIS Express.

 

 
Ensure that you are using the HTTP port of IIS when the project is running, and not the 
HTTPS because ngrok forwards the request to the HTTP port.
 

 

Open Teams (the desktop or web client) and open the App Studio. Open the Manifest editor tab and 
click on the Create a new app button. In the App details section, define the Short name and Long name 
of the application (any combination of strings) and click on the Generate button under the Identification 
section. Then define a Package Name and Version, Description, Long description, Name and Website of 
the developer. In the App URLs box copy the ngrok URL extended with the file names of the privacy and 
terms pages.

Click on the Tabs button under Capabilities, and then on the Add button for Add a personal tab. On the 
new window, define a Name for the tab, a unique string for the Entity ID (it can be any string, but it must 
be unique), and add the ngrok URL for the content page of the application in the Content URL and 
Website URL boxes.

Finally, click on the Test and distribute button under the Finish section. If there are errors in the 
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information, the validation will show them. Use the Install button, and Teams will show the Personal Tab 
application. The manifest can be downloaded, and it will be like the next one.

 

 
{
    "$schema": "https://developer.microsoft.com/en-us/json-schemas/teams
/v1.5/MicrosoftTeams.schema.json",
    "manifestVersion": "1.5",
    "version": "1.0.0",
    "id": "48cb3b67-6afb-49e2-be45-d3bdc34aef10",
    "packageName": "bookPersonalTab",
    "developer": {
        "name": "gavd",
        "websiteUrl": "https://43b609a6.ngrok.io/generateguid.aspx",
        "privacyUrl": "https://43b609a6.ngrok.io/privacy.aspx",
        "termsOfUseUrl": "https://43b609a6.ngrok.io/terms.aspx"
    },
    "icons": {
        "color": "color.png",
        "outline": "outline.png"
    },
    "name": {
        "short": "PersonalTab",
        "full": "Personal Tab for the book"
    },
    "description": {
        "short": "Personal Tab for the book",
        "full": "This is the Personal Tab for the book"
    },
    "accentColor": "#FFFFFF",
    "staticTabs": [
    {
        "entityId": "guidGenerator01",
        "name": "GuidGenerator",
        "contentUrl": "https://43b609a6.ngrok.io/generateguid.aspx",
        "websiteUrl": "https://43b609a6.ngrok.io/generateguid.aspx",
        "scopes": [
            "personal"
        ]
    }
    ],
    "permissions": [
        "identity",
        "messageTeamMembers"
    ],
        "validDomains": [
        "43b609a6.ngrok.io"
    ]
}
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