

Office 365 - The best recipes for
developers

Copyright © 2020 Güitaca Publishers (https://guitaca.com)

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Güitaca Publishers, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

This book is sold with the understanding that neither the publisher nor the author is
engaged in providing legal, accounting, or other professional service, and that they shall
not be liable for damages arisen from the use of the published code.

First published: April 2020

ISBN 978-958-48-8932-4

Amsterdam - Bogotá - Bilbao

https://guitaca.com/

About Güitaca Publishers

Güitaca was an extremely beautiful goddess who celebrated a life full of joy, games, and
pleasure. As a result of protesting against Bochica, the heavens CEO, she was turned into
a white owl. Güitaca, coming from the Muisca mythology, is our symbol and guardian. The
Muiscas were the pivot civilization of the Americas, between the Incas in the south, and
the Aztecs in the north, inhabiting the Altiplano Cundiboyacense, a high plateau in the
Colombian Andes.

Güitaca Publishers is an independent company aimed at bringing out technical books in
electronic format, especially about Information Technology, computer developing, and
systems engineering. We aim to present the most recent publications to our readers using
novel processes as, for example, our "Books by subscription" concept.

Our team is internationally located and makes use of the most modern computer
technology to communicate and produce our books. The Güitaca Publishers team is
composed of:

Vicky Santana - Editor in Chief
Our CEO, with an ample experience managing international magazines and
publications, Vicky inspires, administers, and coordinates the Güitaca
enterprise. A journalist by profession and photograph by spirit, she takes care
of the complete publishing process.

Alcira Blanco - Language Department
Alcira oversees our translation and editing department. She ensures that you

can understand what our authors try to tell you. From her background in biology
stems her affinity for environmental themes, and she is a translator and

proofreader for the love of art and languages.

Martha Sarmiento - Graphic Design
You can read our books thanks to the designs made by Martha. Professional in
graphic design, specialized in editorial processes, design and layout of print
media, Martha has quite a long experience in the field.

 Alejandro Pérez & Jordi Niubó - Artwork Design
Alejandro and Jordi are the creators of our covers, logos and all the artwork of
Güitaca. Alejandro has developed his career as copywriter, account executive

and project coordinator in his bilbaosolutions.com own company. Jordi is trained
in artistic disciplines and computer technologies (jordiniubo.com), with mentions

of his work by the EIDE.

If you wish to make contact with the Güitaca Publishers team, please send us an email to
info@guitaca.com. We are interested as well if you want to become one of our authors.

Amsterdam - Bogotá - Bilbao

http://bilbaosolutions.com/
https://www.jordiniubo.com/
mailto:info@guitaca.com

About the author

Gustavo Velez is a mechanical and electronics engineer
working as a software developer and senior solutions
architect for more than thirty years. Specialized in
integration of Microsoft software, he started working with
SharePoint before the server got its current name: in 1998,
Gustavo finalized his first enterprise collaboration project
using Site Server, the precursor of SharePoint, and
Microsoft's first effort at providing a solution to the growing
business of Internet-based Document Management,
Content Management, and Site Personalization.

Gustavo is Microsoft's Most Valuable Professional (MVP) since 2008. In his many years
of experience developing and working with Windows and Office applications, Gustavo
has given seminars/training in SharePoint and has also done consultancy work for
several of the biggest SharePoint implementations in Europe, Africa, and South
America. His articles can be found in many of the leading trade magazines in English,
Dutch, German, and Spanish. He is the webmaster of http://www.gavd.net, the main
Spanish language site dedicated to SharePoint. Gustavo is author and co-author of ten
books about SharePoint, and founder and editor of CompartiMOSS an specialized
magazine about Microsoft technologies.

http://www.compartimoss.com/

Foreword

Writing a new book is always a big experience and an adventure. And, in this case, it is not
an adventure that will be finished when the book is ready: It will be a continuous endeavor
for many years. Following the main idea and guidelines of Güitaca Publishers, this is a
book that will reinvent itself again and again, following the Microsoft Office 365 constant
evolution.

After working with Microsoft SharePoint Server since its introduction, it was somehow
difficult to switch to SharePoint Online at first. I came from SharePoint implementations
where everything was customized, where everything the customer wanted was possible to
be done. And, suddenly, I had to work wearing a very tight corset that hindered my
freedom as an architect and developer; furthermore, the product was no more "mine", but
owned by Microsoft. When the online version started evolving in a freer direction, I found
back the joy that SharePoint Server always gave me. And, in the latest years, exploring
and implementing not only all the new products in the Office suite but also the countless
possibilities of interaction with Microsoft Azure, my professional life has not only been
enriched, but has also become more exhilarating (and complicated).

This book would not have been possible without the support of the complete team of
Güitaca Publishers. The incessant encouragement of Vicky (the editor in chief) has been
heartwarming, in a way only she can do it. And the backing of Alcira (in charge of the
linguistics team), helping me through the labyrinths of a language that is not mine, has
been invaluable. I also need to thank Vadim Gremyachev (colleague MVP and developer,
https://blog.vgrem.com), and John Gillard (from ABCpdf,
http://www.websupergoo.com) for their generosity helping me with software to support
my work.

I hope you will enjoy this book and find it helpful following your path through Office 365.

With kindest regards,

Gustavo Velez

https://blog.vgrem.com/
http://www.websupergoo.com/

Book structure

"Office 365: the best recipes for developers" is a book aimed at coders. It explains how to
work programmatically with Microsoft Office 365.

Office 365 is the collaboration and information sharing platform of Microsoft. It offers a few
servers (Exchange, SharePoint), editing and authoring tools (Outlook, Word, Excel,
PowerPoint, Visio), and a myriad of other applications to help businesses in creating,
managing and organizing information.

Whom is this book for?

This is a book made by and targeted to developers. We assume the readers do know how
the Office applications work: You will not find functional descriptions or instructions for use.
The book is also for developers that know the programming tools and technologies used
by Microsoft and Office 365: Visual Studio, Visual Studio Code, CSharp, PowerShell,
JavaScript, etc.

To develop with Office, if you do not have a license, you can join the
Office Developer Program to get one and do the necessary development
with the Office 365 suite of programs:

https://developer.microsoft.com/en-us/office
/dev-program.

The subscription is valid for 90 days and can be renewed for another 90
days for as long as you are using it for development activity.

Books by subscription

This is one in the series of books published by Güitaca under the mantra "Books by
Subscription". Because modern technologies, and specially cloud software, evolve in a
very fast tempo, the only way to maintain our readers actualized is publishing books that
progress at the same speed as the technology.

https://developer.microsoft.com/en-us/office/dev-program

You can buy the book in three ways:

- Book plus subscription for 12 updates. You will get the latest book version,
access to the monthly updates, access to the repositories with the source code, and
support from the author.

- Book only. You will get the first version of the book. You will miss the updates, will
have no access to the source code repositories nor any kind of support. This is the
case if you buy the book from Amazon or any other place and not directly from
Güitaca (see the following section if this is your case).

- Subscription only. If you bought the book only and want to update it to the latest
version, or if your subscription has expired and you want to renew it.

If you have a subscription, every four to six weeks you will receive an update that includes:

- Changes, modifications, and additions made by Microsoft to the technologies
explained in the book.

- New content. We are aware that the book, probably, will never comprise every
aspect of Office 365. Also, we do not have the arrogance to say that the author
knows everything about Office. But we can ensure that we are aiming to make the
content as complete as we can.

- Additionally, you get support from the author. If you have any question about the
book or the published code, just let us know (info@guitaca.com) and we will try to
help you as soon as possible (if we can, of course).

After 12 updates, we will produce a new edition, consolidating the last updates, adding
new content if necessary, and initializing a new cycle. If you bought the book with
subscription, you do not need to pay for it again: Your book registration will comprise the
new edition as well if the subscription is valid.

If you bought the book from Amazon or another provider

If you bought your book from Amazon or any other provider, you will only get the book, will
have no updates subscription, no access to the source code and no support from the
author.

You can update your book getting the complete experience by going to our site
https://guitaca.com, and buying the Subscription only offering. You only need to send
us the receipt you got from Amazon or other provider, and you will get the full and most
recent book version, access to the following 12 updates, access to the source code
repositories, and support from the author.

mailto:info@guitaca.com
https://guitaca.com/

Your book registration

The book updates are available from our download site https://guitaca.com
/Home/Login. When you buy the book from our site (or the Subscription deal if you bought
your book from a provider other than Güitaca), you receive a License Key sent to you with
the receipt or after our validation. With your email address and this license code, you can
log in to the downloads site. If you lose the code, you can ask for a new one from the site
(a confirmation email will be sent to your email address, and you need to validate it).

Data privacy statement:
We only ask for an email address for registration of your book's copy and
make the downloads available for you. We DON'T use it for any
commercial purpose, and we will never monetize it in any way. You
will only receive a few emails from us:

- When you buy the book (or subscription) from our site, you receive
one email with the acknowledgement of receipt and your License
Key code.

- If you lose your password and request a new one, we will send one
validation email first and then another one, after validation, with
the new License Key to the registered address.

- By default, we will send you one email when a new update is ready
for download. You can void it at any moment from the download
site self (and you can change it again if you wish).

- If your subscription is coming to an end, we will send you one
email with instructions on how to renew it.

About the source code

All the source code was developed using Visual Studio Enterprise and, in some cases,
Visual Studio Code. We always use the last version of Visual Studio, with the latest
patches installed. Each fragment of code (recipe) was tested to ensure the code is
functioning correctly. Whenever possible, we also made unit-test classes (not available for
download), so that we can automatically test the code if Microsoft changes something in
the APIs.

https://guitaca.com/Home/Login

Although Visual Studio Enterprise was used for the code, you can also
use Visual Studio Community, which can be downloaded for free from
the Microsoft site:

https://visualstudio.microsoft.com/downloads/

Visual Studio Code is an Open Source and free code editor that can be
downloaded from the same site, and is used for some parts of the book as
well.

The code is simplified as much as possible to minimize its size: It does not include, for
example, exception routines, and it should not be used directly for production applications.

All the source code can be downloaded from our source code repositories. To locate the
solution used, each source fragment in the book has a header in the following form (if you
bought the book only offered from Amazon or other provider, your copy will not have the
information about the repo and code location):

Where:

1 is the chapter number and sequential number of the recipe in the chapter. If you need to
send us a comment about any code fragment in the book, please refer to this number.

2 is the solution code identifier. This is the name of the solution that you will find in the

https://visualstudio.microsoft.com/downloads/

repository.

3 is the file name where the recipe can be found in the solution.

4 is the additional information about the routines, NuGets, dlls, etc., required to make the
recipe work.

Amsterdam - Bogotá - Bilbao

Table of Content

Exchange Online 1

1.1. Introduction to developing for Exchange 2

1.2. Login in Exchange 2
1.2.1. Login from a managed language (CSharp) 2

1.2.2. Login from PowerShell 3

1.2.3. Login with user credentials for EWS (Basic Authentication) and CSharp 4

1.2.4. Login with oAuth for EWS and CSharp 6

1.2.5. Login for EWS with PowerShell and Basic Authentication 8

1.2.6. Login for EWS with PowerShell and oAuth 9

1.2.7. Login using the Exchange Online PowerShell 10

1.3. Programming Exchange with EWS and CSharp 11
1.3.1. Folders and folder structure using EWS 12

1.3.2. Working with emails 18

1.3.3. Using contacts in Exchange 36

1.3.4. Developing for calendars in Exchange with EWS 43

1.4. Programming Exchange with EWS and PowerShell 57
1.4.1. Working with Exchange Folders using EWS and PowerShell 57

1.4.2. Using emails with EWS and PowerShell 60

1.4.3. Programming the Exchange contacts with PowerShell and EWS 63

1.4.4. Approaching the Calendar with EWS and PowerShell 67

1.5. Tools to work with EWS 70

1.6. Using Exchange Online PowerShell 71

Microsoft Word Online 75

2.1. Introduction to developing for the Office 365 clients 76

2.2. Introduction to OpenXML for Word 77

2.3. Working with Word documents and OpenXML (CSharp) 79
2.3.1. Creation of Word documents with OpenXML 79

2.3.2. Read and add text to a Word document 80

2.3.3. The Word document properties 82

2.3.4. Creating and adding styles in a Word document 84

| OFFICE 365: The best recipes for developers |

2.3.5. Word document headers and footers 87

2.3.6. Working with comments in Word documents 92

2.3.7. Tables and content in Word documents 95

2.3.8. Word documents with images 98

2.3.9. Other operations with OpenXML and Word documents 102

2.4. Introduction to Word Visual Studio Tools for Office (VSTO) 106

2.5. Developing VSTO applications for Word Office 365 106
2.5.1. Basic Word VSTO Add-in 106

2.5.2. Modifying the Ribbon with a Word VSTO Add-in 107

2.5.3. Basic VSTO document-level customization 110

2.6. Introduction to Word Web Add-ins 110

2.7. Developing Word Web Add-ins for Office 365 with Visual Studio 111
2.7.1. Basic Web Add-in for Word Office 365 111

2.7.2. Word Web Add-in calling a REST service 113

Microsoft Excel Online 116

3.1. Introduction 117
3.1.1. Different forms of Excel Add-Ins 117

3.1.2. The Developer Tab in Office 365 117

3.2. Introduction to OpenXML 118

3.3. Working with Excel spreadsheets and OpenXML (CSharp) 119
3.3.1. Creation of Excel spreadsheets with OpenXML 120

3.3.2. Add cells and values to spreadsheets with OpenXML 120

3.3.3. Read the cell values in a spreadsheet 122

3.3.4. Update a cell value in a spreadsheet 127

3.3.5. Find all sheets in a spreadsheet 128

3.3.6. Find hidden columns and rows in a spreadsheet 130

3.3.7. Adding charts to a spreadsheet 131

3.4. Introduction to Excel Visual Studio Tools for Office (VSTO) 136

3.5. Developing VSTO applications for Excel Office 365 137
3.5.1. Basic Excel VSTO Add-in 137

3.5.2. Adding and using panels with a VSTO Add-in for Excel 138

3.5.3. Basic VSTO Excel document-level customization 141

3.6. Introduction to Excel Web Add-ins 142

3.7. Developing Excel Web Add-ins for Office 365 with Visual Studio 142
3.7.1. Basic Web Add-ins for Excel Office 365 142

3.7.2. Excel Web Add-in calling a REST service 146

| OFFICE 365: The best recipes for developers |

3.8. Using external libraries to work with Excel 148
3.8.1. Create a new Excel spreadsheet and set cells using EPPlus 148

3.8.2. Read the value of one cell 149

3.8.3. Update the cell values with EPPlus 150

3.8.4. Creation of charts 150

3.8.5. Adding graphics and styles to spreadsheets 153

3.8.6. Working with formulas in spreadsheets using EPPlus 154

Microsoft PowerPoint Online 156

4.1. Introduction 157

4.2. Introduction to OpenXML 157

4.3. Working with PowerPoint presentation and OpenXML (CSharp) 159
4.3.1. Creation of PowerPoint presentations with OpenXML 159

4.3.2. Find text in one slide 168

4.3.3. Change the theme of a presentation 172

4.3.4. Working with slides in a PowerPoint presentation 173

4.3.5. Working with comments in presentations 179

4.3.6. Working with notes in slides 183

4.3.7. Add pictures and shapes to a slide in the presentation 185

4.4. Introduction to Visual Studio Tools for Office (VSTO) and PowerPoint 188

4.5. Developing customizations for PowerPoint with VSTO 188
4.5.1. Basic PowerPoint VSTO Add-in 189

4.6. Introduction to PowerPoint Web Add-ins 190

4.7. Developing Web Add-ins for PowerPoint presentations 190
4.7.1. Basic Web Add-ins for PowerPoint 190

4.7.2. PowerPoint presentations getting data from a REST service 193

Microsoft Outlook Online 196

5.2. Using Outlook Visual Studio Tools for Office (VSTO) 197
5.2.1. Introduction of VSTO for Outlook 197

5.2.2. Limitations of VSTO in Outlook 197

5.2.3. Basic VSTO Add-in applications for Outlook 365 198

5.2.4. Modifying the Outlook ribbon 200

5.2.5. Working with emails and VSTO 201

5.2.6. Outlook Contacts through VSTO 203

| OFFICE 365: The best recipes for developers |

5.2.7. Programming the Outlook Calendar with VSTO 205

5.2.8. Folders in Outlook and VSTO 207

5.3. Outlook Web Add-ins 209
5.3.1. Introduction to Outlook Web Add-ins 209

5.3.2. Basic Outlook Web Add-in 210

5.3.3. Getting information from a REST service inside an Outlook Add-in 212

SharePoint Introduction and Login Routines 214

6.1. Login (CSharp) using the SharePoint Client Object Model (CSOM) 215

6.2. Login (CSharp) using PnP Core 217

6.3. Login (CSharp) to use REST 218

6.4. Login (PowerShell) using CSOM 222

6.5. Login (PowerShell) using the SharePoint Online SPO cmdlets 224

6.6. Login (PowerShell) using PnP for SharePoint Online 225

6.7. Login (PowerShell) to use REST 226

SharePoint Online Tenant 232

7.1. Introduction 233

7.2. Working with the tenant and the Client Side Object Model (CSharp) 233
7.2.1. Retrieve the tenant properties configuration - CSOM, CSharp 233

7.2.2. Update the tenant properties configuration - CSOM, CSharp 234

7.3. Approaching the tenant using REST (CSharp) 235
7.3.1. Find the App Catalog URL - REST, CSharp 235

7.3.2. Find tenant properties - REST, CSharp 235

7.4. Working in the tenant using PowerShell CSOM (PowerShell) 236
7.4.1. Tenant properties configuration - CSOM, PowerShell 236

7.4.2. Update the tenant properties configuration - CSOM, PowerShell 237

7.5. Approaching the tenant using REST (PowerShell) 237
7.5.1. Find the App Catalog URL - REST, PowerShell 237

7.5.2. Find tenant properties - REST, PowerShell 238

7.6. Using SPO cmdlets for the tenant (PowerShell) 238
7.6.1. Retrieve and modify tenant properties - SPO, PowerShell 238

7.6.2. Get the tenant error logs - SPO, PowerShell 239

7.6.3. Working with the CDN - SPO, PowerShell 240

| OFFICE 365: The best recipes for developers |

7.6.4. Tenant properties in the App Catalog - SPO, PowerShell 243

SharePoint Online Site Collections and Webs 245

8.1. Introduction 246

8.2.
Operations for modern Site Collections with the Client Side Object Model
(CSharp)

246

8.2.1. Creation of modern Site Collections - CSOM, CSharp 246

8.2.2. Enumeration of Site Collections in the Tenant - CSOM, CSharp 248

8.2.3. Delete Site Collections from the Tenant - CSOM, CSharp 249

8.2.4. Add users with rights to one Site Collection - CSOM, CSharp 250

8.2.5. Working with modern Hub Sites - CSOM, CSharp 251

8.3.
Operations for Webs in a Site Collection with the Client Side Object
Model (CSharp)

254

8.3.1. Create Web Sites in a Site Collection - CSOM, CSharp 254

8.3.2. Find the Webs of a Site Collection - CSOM, CSharp 255

8.3.3. Update one Web in a Site Collection - CSOM, CSharp 256

8.3.4. Delete one Web from a Site Collection - CSOM, CSharp 256

8.3.5. Break and Reset the security inheritance of a Web Site - CSOM, CSharp 257

8.3.6.
Add, update and delete users to the security configuration of a Web Site -
CSOM, CSharp

258

8.4.
CRUD operations for Site Collections and Webs using PnP Core
(CSharp)

260

8.4.1. Create Site Collections and Web sites - PnPCore, CSharp 260

8.4.2. Enumerate all Webs in a Site Collection - PnPCore, CSharp 262

8.4.3. Operations with PnPCore for Site Collections and Webs - PnPCore, CSharp 262

8.5. CRUD operations using REST for Site Collections and Webs (CSharp) 263
8.5.1. Creating Site Collections and Webs inside Site Collections - REST, CSharp 263

8.5.2. Enumerate Site Collections and Webs - REST, CSharp 266

8.5.3. Update the properties of a Web - REST, CSharp 267

8.5.4. Delete Webs from Site Collections - REST, CSharp 268

8.5.5. Permissions in a Web - REST, CSharp 268

8.5.6. Break and reset the security inheritance of Webs - REST, CSharp 270

8.5.7. Add, update and delete users in Webs - REST, CSharp 271

8.6. Working with Site Collections using PowerShell CSOM(PowerShell) 274
8.6.1. Creation of modern Site Collections - CSOM, PowerShell 275

8.6.2. Enumeration of Site Collections in the Tenant - CSOM, PowerShell 277

8.6.3. Delete Site Collections from the Tenant - CSOM, PowerShell 277

8.6.4. Add users with rights to one Site Collection - CSOM, PowerShell 279

| OFFICE 365: The best recipes for developers |

8.6.5. Working with modern Hub Sites - CSOM, PowerShell 279

8.7. PowerShell CSOM used to work with Webs (PowerShell) 282
8.7.1. Create Web Sites in a Site Collection - CSOM, PowerShell 282

8.7.2. Find the Webs of a Site Collection - CSOM, PowerShell 283

8.7.3. Update one Web in a Site Collection - CSOM, PowerShell 284

8.7.4. Delete one Web from a Site Collection - CSOM, PowerShell 285

8.7.5. Break and Reset the security inheritance of a Web Site - CSOM, PowerShell 285

8.7.6.
Add, update and delete users to the security configuration of a Web Site -
CSOM, PowerShell

286

8.8. Operations for Site Collections using PowerShell PnP (PowerShell) 288
8.8.1. Create Site Collections - PnP, PowerShell 288

8.8.2. Retrieve Site Collections - PnP, PowerShell 289

8.8.3. Update Site Collections - PnP, PowerShell 290

8.8.4. Delete Site Collections - PnP, PowerShell 291

8.8.5. Working with Hub Site Collections - PnP, PowerShell 292

8.8.6. Rights and Permissions for Site Collections - PnP, PowerShell 293

8.9. Operations for Webs using PowerShell PnP (PowerShell) 294
8.9.1. Creation of Webs in Site Collections - PnP, PowerShell 294

8.9.2. Enumerate Webs in a Site Collection - PnP, PowerShell 295

8.9.3. Update properties in Webs - PnP, PowerShell 295

8.9.4. Deleting Web from Site Collections - PnP, PowerShell 296

8.9.5. Security permissions for a Web - PnP, PowerShell 296

8.10.
Operations for Site Collections using SharePoint Online (SPO) cmdlets
(PowerShell)

296

8.10.1. Create, test and repair Site Collections - SPO, PowerShell 297

8.10.2. Find Site Collections - SPO, PowerShell 298

8.10.3. Update Site Collections - SPO, PowerShell 299

8.10.4. Delete Site Collections - SPO, PowerShell 299

8.10.5. Working with Hub Site Collections - SPO, PowerShell 300

8.10.6. Security-related cmdlets for users - SPO, PowerShell 303

8.10.7. Security-related cmdlets for groups - SPO, PowerShell 305

8.11.
CRUD operations for Site Collections and Webs using PowerShell REST
(PowerShell)

307

8.11.1. Creating Site Collections and Webs inside Site Collections - REST, PowerShell 307

8.11.2. Enumerate the Site Collections and Webs - REST, PowerShell 309

8.11.3. Update methods for a Web - REST, PowerShell 310

8.11.4. Delete Webs from Site Collections - REST, PowerShell 310

8.11.5. Permissions for users in a Web - REST, PowerShell 311

8.11.6. Break and reset the security inheritance of Webs - REST, PowerShell 312

8.11.7. Add, update and delete users to the security of Webs - REST, PowerShell 313

| OFFICE 365: The best recipes for developers |

SharePoint Online Lists and Libraries 317

9.1. Introduction 318

9.2. CRUD operations for Lists with the Client Side Object Model (CSharp) 318
9.2.1. List creation - CSOM, CSharp 318

9.2.2. List find and read properties - CSOM, CSharp 319

9.2.3. List Update - CSOM, CSharp 320

9.2.4. List Delete - CSOM, CSharp 320

9.2.5. Add one Field to a List - CSOM, CSharp 321

9.2.6. Read the Fields in a List - CSOM, CSharp 321

9.2.7. Update one List Field - CSOM, CSharp 322

9.2.8. Eliminate one Field from a List - CSOM, CSharp 323

9.2.9. Break and Reset the List's Security Inheritance - CSOM, CSharp 323

9.2.10. Add one user with permissions to the List's Security - CSOM, CSharp 325

9.2.11. Update the user permissions in the List's Security - CSOM, CSharp 325

9.2.12. Delete one user from the Security for the List - CSOM, CSharp 326

9.3. CRUD operations for Lists with PnPCore (CSharp) 326
9.3.1. List creation - PnPCore, CSharp 327

9.3.2. List find and read properties - PnPCore, CSharp 327

9.3.3. List Exists - PnPCore, CSharp 328

9.3.4. Add one Field to a List - PnPCore, CSharp 328

9.3.5. Read the Fields in a List - PnPCore, CSharp 329

9.3.6. Add permissions to the List - PnPCore, CSharp 330

9.3.7. Get one Content Type used in the List - PnPCore, CSharp 331

9.3.8. Add one Content Type to a List - PnPCore, CSharp 331

9.3.9. Eliminate one Content Type from a List - PnPCore, CSharp 332

9.3.10. Find one View for a List - PnPCore, CSharp 332

9.3.11. Create Views for Lists - PnPCore, CSharp 333

9.4. CRUD operations for Lists with REST (CSharp) 333
9.4.1. List creation - REST, CSharp 333

9.4.2. List find and read properties - REST, CSharp 334

9.4.3. List Update - REST, CSharp 335

9.4.4. List Delete - REST, CSharp 335

9.4.5. Add one Field to a List - REST, CSharp 336

9.4.6. Read the Fields in a List - REST, CSharp 337

9.4.7. Update one List Field - REST, CSharp 338

9.4.8. Eliminate one Field from a List - REST, CSharp 339

9.4.9. Break and Reset the List's Security Inheritance - REST, CSharp 339

| OFFICE 365: The best recipes for developers |

9.4.10. Add one user with permissions to the List's Security - REST, CSharp 340

9.4.11. Update the user permissions in the List's Security - REST, CSharp 342

9.4.12. Delete one user from the Security for the List - REST, CSharp 343

9.5. CRUD operations for Lists with PowerShell CSOM (PowerShell) 344
9.5.1. List creation - CSOM, PowerShell 344

9.5.2. Find a List and read its properties - CSOM, PowerShell 345

9.5.3. List Update - CSOM, PowerShell 346

9.5.4. List Delete - CSOM, PowerShell 346

9.5.5. Add one Field to a List - CSOM, PowerShell 346

9.5.6. Retrieve the Fields in a List - CSOM, PowerShell 347

9.5.7. Update one List Field - CSOM, PowerShell 348

9.5.8. Eliminate one Field from a List - CSOM, PowerShell 349

9.5.9. Break and Reset the List's Security Inheritance - CSOM, PowerShell 349

9.5.10. Add one user with permissions to the List's Security - CSOM, PowerShell 351

9.5.11. Update the user permissions in the List's Security - CSOM, PowerShell 352

9.5.12. Delete one user from the Security for the List - CSOM, PowerShell 353

9.6. CRUD operations for Lists with PnP PowerShell (PowerShell) 353
9.6.1. List creation - PnP, PowerShell 353

9.6.2. List find and read properties - PnP, PowerShell 354

9.6.3. List Update - PnP, PowerShell 355

9.6.4. List Delete - PnP, PowerShell 355

9.6.5. Add one Field to a List - PnP, PowerShell 355

9.6.6. Read the Fields in a List - PnP, PowerShell 356

9.6.7. Update one List Field - PnP, PowerShell 357

9.6.8. Eliminate one Field from a List - PnP, PowerShell 357

9.7. CRUD operations for Lists with REST and PowerShell (PowerShell) 358
9.7.1. List creation - REST, PowerShell 358

9.7.2. List find and read properties - REST, PowerShell 358

9.7.3. List Update - REST, PowerShell 359

9.7.4. List Delete - REST, PowerShell 360

9.7.5. Add one Field to a List - REST, PowerShell 360

9.7.6. Read the Fields in a List - REST, PowerShell 361

9.7.7. Update one List Field - REST, PowerShell 362

9.7.8. Eliminate one Field from a List - REST, PowerShell 362

9.7.9. Break and Reset the List's Security Inheritance - REST, PowerShell 363

9.7.10. Add one user with permissions to the List's Security - REST, PowerShell 364

9.7.11. Update the user permissions in the List's Security - REST, PowerShell 365

9.7.12. Delete one user from the Security for the List - REST, CSharp 366

| OFFICE 365: The best recipes for developers |

file:///C:/Temp_Local/BookO365Dev/MyBookFiles/DocsHtmlFormated/09-SharePoint_ListsAndLibraries.html#9.5.

SharePoint Online Items and Documents 367

10.1. Introduction 368

10.2.
Operations for Items and Documents with the Client Side Object Model
(CSharp)

368

10.2.1. Items creation - CSOM, CSharp 368

10.2.2. Documents upload - CSOM, CSharp 369

10.2.3. Documents download - CSOM, CSharp 371

10.2.4. Find Items and read their properties - CSOM, CSharp 373

10.2.5. Find Files and read their properties - CSOM, CSharp 374

10.2.6. Update List Items - CSOM, CSharp 376

10.2.7. Update Document properties - CSOM, CSharp 376

10.2.8. Delete List Items - CSOM, CSharp 377

10.2.9. Delete Documents - CSOM, CSharp 378

10.2.10. Break and reset the Item's and File's security inheritance - CSOM, CSharp 379

10.2.11.
Add one user with permissions to the Items and Documents - CSOM,
CSharp

380

10.2.12. Update the user permissions for Items and Documents - CSOM, CSharp 381

10.2.13. Delete one user from the Item's and Document's Security - CSOM, CSharp 382

10.3. Operations for Items and Documents with PnPCore (CSharp) 382
10.3.1. Property Bag key creation - PnPCore, CSharp 382

10.3.2. Reading a Property Bag key - PnPCore, CSharp 383

10.3.3. Property Bag entry exists - PnPCore, CSharp 383

10.3.4. Indexing and reading indexed Property Bag entries - PnPCore, CSharp 384

10.3.5. Delete one Property Bag entry - PnPCore, CSharp 384

10.4. Operations for Items and Documents with REST (CSharp) 385
10.4.1. Items creation - REST, CSharp 385

10.4.2. Documents upload - REST, CSharp 386

10.4.3. Documents download - REST, CSharp 386

10.4.4. Find Items and read their properties - REST, CSharp 387

10.4.5. Find Documents in a Library and read their properties - REST, CSharp 388

10.4.6. Update List Items and Files in a Library - REST, CSharp 389

10.4.7. Delete List Items - REST, CSharp 391

10.4.8.
Break and reset the Item's and Document's security inheritance - REST,
CSharp

392

10.4.9.
Add one user with permissions to the Item's and Document's Security -
REST, CSharp

393

10.4.10.
Update the user permissions for the Item's and Document's Security - REST,
CSharp

394

10.4.11. Delete one user from the Item's and Document's Security - REST, CSharp 396

| OFFICE 365: The best recipes for developers |

10.5.
Operations for Items and Documents with PowerShell CSOM
(PowerShell)

397

10.5.1. List Item creation - CSOM, PowerShell 397

10.5.2. Documents upload - CSOM, PowerShell 398

10.5.3. Documents download - CSOM, PowerShell 399

10.5.4. Find Items and Files, and read their properties - CSOM, PowerShell 400

10.5.5. Update List Items - CSOM, PowerShell 402

10.5.6. Delete List Items - CSOM, PowerShell 403

10.5.7.
Break and reset the Item's and Document's security inheritance - CSOM,
PowerShell

405

10.5.8.
Add one user with permissions to the Item's and Document's Security -
CSOM, PowerShell

406

10.5.9.
Update the user permissions for the Item's and File's Security - CSOM,
PowerShell

407

10.5.10.
Delete one user from the Item's and Document's Security - CSOM,
PowerShell

408

10.6. Operations for Items and Files with PnP PowerShell (PowerShell) 408
10.6.1. Items creation - PnP, PowerShell 408

10.6.2. Documents upload - PnP, PowerShell 409

10.6.3. Documents download - PnP, PowerShell 409

10.6.4. Find and enumerate Items - PnP, PowerShell 410

10.6.5. Find, copy and move Files in Libraries - PnP, PowerShell 410

10.6.6. Update List Items and Documents - PnP, PowerShell 412

10.6.7. Delete List Items and Library Documents - PnP, PowerShell 414

10.6.8. Security for Items and Documents - PnP, PowerShell 415

10.7.
Operations for Items and Documents with REST and PowerShell
(PowerShell)

416

10.7.1. Items creation - REST, PowerShell 416

10.7.2. Documents upload - REST, PowerShell 416

10.7.3. Documents download - REST, PowerShell 417

10.7.4. Find Items and Files, and read their properties - REST, PowerShell 417

10.7.5. Update List Items - REST, PowerShell 419

10.7.6. Delete List Items and Library files - REST, PowerShell 420

10.7.7.
Break and reset the Item's and Document's security inheritance - REST,
PowerShell

421

10.7.8.
Add one user with permissions to the Item's and Document's Security -
REST, PowerShell

422

10.7.9.
Update the user permissions for the Item's and Document's Security - REST,
PowerShell

423

10.7.10.
Delete one user from the Item's and Document's Security - REST,
PowerShell

424

| OFFICE 365: The best recipes for developers |

SharePoint Online - Other Components 426

11.2. The Term Store 427

11.2.1.
Using the SharePoint Client Side Object Model programmatically to work with
the Term Store (CSharp)

427

11.2.2. Using PnPCore with the Term Store (CSharp) 433

11.2.3. Using PowerShell and the CSOM for the Term Store (PowerShell) 437

11.2.4. Using PowerShell PnP with the Term Store (PowerShell) 443

11.3. Search 447
11.3.1. Search and the SharePoint Client Side Object Model (CSharp) 447

11.3.2. Using REST to access the SharePoint Search Engine (CSharp) 448

11.3.3. Calling the Search Engine with PowerShell and the CSOM (PowerShell) 449

11.3.4. PowerShell PnP to access the SharePoint Search Engine (PowerShell) 449

11.3.5. PowerShell and REST to call the Search Engine (PowerShell) 450

11.4. User Profile 451
11.4.1. Approaching the User Profile with CSOM (CSharp) 452

11.4.2. REST to access the User Profile (CSharp) 454

11.4.3. Using CSOM PowerShell to reach the User Profile (PowerShell) 456

11.4.4. Using PnP PowerShell to reach the User Profile (PowerShell) 459

11.4.5. PowerShell and REST to access the User Profile (PowerShell) 459

SharePoint Online - SPFx 462

12.1. Introduction 463

12.2. SPFx WebParts 464
12.2.1. Basic SPFx WebPart 465

12.2.2. CRUD with SPFx WebParts (JavaScript and REST) 469

12.2.3. Adding external libraries to an SPFx solution 477

12.2.4. CRUD with SPFx WebParts (JavaScript and PnPjs) 483

12.2.5. Other examples of PnPjs routines for SPFx WebParts 490

12.3. SPFx Extensions 497
12.3.1. Basic Application Customizer SPFx Extension 497

12.3.2. Basic Field Customizer SPFx Extension 499

12.3.3. Basic ListView Command Set SPFx Extension 500

SharePoint Online - Add-ins 505

| OFFICE 365: The best recipes for developers |

13.1. Introduction 506
13.1.1. Developing SharePoint Add-ins 506

13.2. SharePoint Hosted Add-ins 507
13.2.1. Basic (immersive) SharePoint Hosted Add-in 508

13.2.2. AppPart SharePoint Hosted Add-ins 510

13.2.3. Custom Action SharePoint Hosted Add-ins 511

13.2.4. Deploying SharePoint Hosted Add-ins to SharePoint Online 513

13.3. Provider Hosted Add-ins 513
13.3.1. Basic (immersive) Provider Hosted SharePoint Add-in 513

13.3.2. Adding the chrome to a Provider Hosted Add-in 517

13.3.3. Add-in AppPart with Provider Hosted applications 519

13.3.4. Provider Hosted Custom Actions 520

Microsoft Teams 524

14.1. Introduction 525

14.2. Teams configuration for developing 525

14.3. Developing for Teams and development tools 526
14.3.1. Location of the Teams objects 526

14.3.2. Teams App Studio 527

14.3.3. Teams Developer Preview 527

14.3.4. ngrok 528

14.3.5. Cards 529

14.4. Teams Tabs 529
14.4.1. Personal Tabs 530

14.4.2. Channel Tabs 535

14.5. Bots 542

14.6. Messaging Extensions 550
14.6.1. Messaging Extensions with Search Commands 550

14.6.2. Messaging Extensions with Action Commands 557

14.7. Webhooks 562
14.7.1. Incoming Webhooks 562

14.7.2. Outgoing Webhooks 566

14.8. SharePoint Framework (SPFx) WebParts as Teams Tabs 572

14.9. Teams Tabs as SPFx WebParts for SharePoint 575

14.10. Managing Teams with PowerShell 576
14.10.1. Connect to Teams 577

14.10.2. CRUD operations for Teams 578

| OFFICE 365: The best recipes for developers |

14.10.3. CRUD operations for Channels 580

14.10.4. Users and Policies management 582

Power Automate 585

15.1. Introduction 586

15.2. Connectors 586
15.2.1. Creation of a Custom Connector for Power Automate 586

15.2.2. Installation of a Custom Connector for Power Automate 589

15.3. Calling REST services directly 590
15.3.1. Making a GET call 590

15.3.2. Making a POST call 591

15.4. Receiving HTTP calls directly 591
15.4.1. Receiving a call with the Request action 591

15.4.2. Using a Response action to react to a call 592

15.5. PowerShell for Power Automate 592
15.5.1. Connect to Power Automate 593

15.5.2. Admin cmdlets for Power Automate 594

15.5.3. Maker cmdlets for Power Automate 598

15.5.4. Power Automate in SharePoint and PowerShell 604

Power Apps 605

16.1. Introduction 606

16.2. Connectors 606

16.3. Connecting Power Apps with Power Automate 607

16.4. PowerShell for Power Apps 609
16.4.1. Connect to Power Apps 609

16.4.2. Admin cmdlets for Power Apps 611

16.4.3. Maker cmdlets for Power Apps 615

End of TOC

| OFFICE 365: The best recipes for developers |

Exchange Online

1. Exchange Online @#bm$%

 Exchange Online is the hosted version for the messaging platform
in Microsoft Office 365 that provides organizations with access to
the full-featured version of the traditional Onprem Exchange Server.
Microsoft Exchange Online is among the most mature of
Microsoft’s cloud offerings, being part of the Office cloud offering
from the beginning, when Office 365 was called Business
Productivity Online Suite (BPOS). That also means that Exchange
is almost fully developed and there has not been any new main
functionality added for years.
The same can be said about the development possibilities of
Exchange: The current API, the Exchange Web Services (EWS),
hasn't changed in many years, although it is becoming replaced by
the Microsoft Graph API, which is progressively introducing a new
REST interface for the server.

| OFFICE 365: The best recipes for developers |

1
(2020-04)

1.1. Introduction to developing for Exchange @#bm$%

Exchange Online offers three main possibilities to be accessed programmatically: Exchange Web
Services API (EWS), a dedicated set of PowerShell cmdlets (called Exchange Online PowerShell), and,
since the introduction of Microsoft Graph, the possibility to approach Exchange Online using REST APIs
has been open. Because Graph is an ongoing project by Microsoft, the functionality it offers is not (yet)
as complete as the possibilities given by EWS, but Graph is officially replacing EWS. The Exchange
Online PowerShell is mainly used for configuration, monitoring, maintenance, and to manage Exchange
from the command line.

EWS is becoming deprecated: Microsoft has announced

(https://developer.microsoft.com/en-us/graph/blogs/upcoming-
changes-to-exchange-web-services-ews-api-for-office-365/) that
starting on July 19th, 2018 "...Exchange Web Services (EWS) will no longer receive
feature updates. While the service will continue to receive security updates and certain
non-security updates, product design and features will remain unchanged. This change
also applies to the EWS SDKs for Java and .NET as well."

EWS can be used in precisely the same way for Exchange Online and Exchange Onprem, the only
difference is given by the disparities in functionality in the two systems (they are very similar in any way),
and the login method. EWS can be used in different ways: As a managed API by any development
language (making SOAP, Simple Object Access Protocol, calls under the hood), as a set of SOAP Web
Services, and from PowerShell. Because SOAP has been replaced by REST in the enterprise and is, in
fact, not used anymore, its programmatic use will be not discussed in this book.

Regarding PowerShell, there is a set of cmdlets dedicated to Exchange Online
Protection (EOP), but they are only used in standalone EOP organizations (for
example, to protect an OnPremises Exchange environment). If you are working with an
Office 365 subscription that includes EOP (E3, E5, etc.), you don't use Exchange Online
Protection PowerShell; the same features are available in the standard Exchange Online
PowerShell modules.

1.2. Login in Exchange @#bm$%

As it happens with other servers from Office 365, it is necessary to log in to the system to be
authenticated, before any program can start interacting with the data.

1.2.1. Login from a managed language (CSharp) @#bm$%

For the CSharp examples in this chapter, the values to log in to Exchange (email address, password,
application ID, and tenant ID, depending on the authorization method) are saved in an external file called

| OFFICE 365: The best recipes for developers |

2
(2020-04)

exCs.values.config that is used by the appSettings section in the App.Config Visual Studio Solution file.
The App.Config file for the Visual Studio Solution contains the following section inside the
<configuration> tag:

<appSettings file="c:\Temporary\exCs.values.config">
 <add key="exUserName" value="" />
 <add key="exUserPw" value="" />
 <add key="exAppId" value="" />
 <add key="exTenantId" value="" />
</appSettings>

The first line points to an external file that contains the values to be used by the App.Config file; it has the
following form:

<appSettings >
 <add key="exUserName" value="user@domain.onmicrosoft.com" />
 <add key="exUserPw" value="VerySecurePw" />
 <add key="exAppId" value="SomeGuid" />
 <add key="exTenantId" value="SomeGuid" />
 </appSettings>

The values can be called by their name in the appSettings file, as follows:

string myExUser = ConfigurationManager.AppSettings["exUserName"];

1.2.2. Login from PowerShell @#bm$%

EWS can be used by PowerShell to reach programmatically the Exchange information. The
Microsoft.Exchange.WebServices.dll needed to work with EWS must be installed locally.

The EWS DLLs can be downloaded from https://www.microsoft.com/en-us
/download/details.aspx?id=42951. Download the EwsManagedApi.msi
file from that site and install it locally. The DLLs will be installed in the local directory
C:\Program Files\Microsoft\Exchange\Web Services\2.2\.

To make the EWS DLLs available for PowerShell, they must be loaded at the beginning of the script with

| OFFICE 365: The best recipes for developers |

3
(2020-04)

the following statement (which must be in one continuous line):

Add-Type -Path "C:\Program Files\Microsoft\Exchange\Web Services\2.2
\Microsoft.Exchange.WebServices.dll"

The values to log in to Exchange (email address, password, application ID, and tenant ID, depending on
the authorization method) are saved in an external file called exPs.values.config (in XML format) that is
loaded by PowerShell at runtime. The external config file is called at the beginning of the script, as
follows:

[xml]$configFile = get-content "C:\Projects\exPs.values.config"

And the file exPs.values.config contains the values to be used in the script; it has the following form:

<appSettings>
 <exUserName>user@domain.onmicrosoft.com</exUserName>
 <exUserPw>VerySecurePw</exUserPw>
 <exAppId>SomeGuid</exAppId>
 <exTenantId>SomeGuid</exTenantId>
</appSettings>

The values can be called by their name in the appSettings file, as follows:

$myUser = $configFile.appsettings.exUserPw

Note: If PowerShell is not allowing to run scripts, change the execution policy using the command:

Set-ExecutionPolicy -ExecutionPolicy [Unrestricted]/[RemoteSigned]/[Default]

1.2.3. Login with user credentials for EWS (Basic Authentication) and CSharp
@#bm$%

| OFFICE 365: The best recipes for developers |

4
(2020-04)

Microsoft recommends not to use basic authentication (using username/password) anymore, although
Exchange Online still accepts this type of authentication. Nevertheless, basic authentication can be a
good option, to avoid extensive setup tasks and repetitive logins, for simple test or demonstration
applications.

EWS Basic Authentication is becoming fully decommissioned: Microsoft has

announced (https://developer.microsoft.com/en-us/graph/blogs
/upcoming-changes-to-exchange-web-services-ews-api-
for-office-365/) that on October 13th, 2020, it "...will stop supporting and fully
decommission the Basic Authentication for EWS to access Exchange Online". This
means that new or existing apps will not be able to use Basic Authentication when
connecting to Exchange using EWS.

The function (ConnectBA) in the following recipe uses the email address and password of one user to get
authorized in Exchange. The AutodiscoverUrl method determines the best endpoint for a given user (the
endpoint that is closest to the user's Mailbox server); this method can be called using only the username
parameter, but Exchange Online rejects the request as unsafe. Therefore, the
RedirectionUrlValidationCallback routine, which is considered valid if it uses HTTPS, must be used in
conjunction with the authentication call. Instantiating the ExchangeService with an empty constructor will
create an instance that is bound to the latest known version of Exchange. The TraceEnabled and
TraceFlag properties can be activated to get information from Exchange about the login process (for
debugging purposes), and the Url method of the service instance gives back the address used by
Exchange Online.

01.001 ID File
Routines
NuGets Microsoft.Exchange.WebServices, Microsoft.Identity.Client
Ref. DLLs Microsoft.Exchange.WebServices, Microsoft.Exchange.WebServices.Auth, Microsoft.Identity.Client
Using Microsoft.Exchange.WebServices.Data, Microsoft.Identity.Client

static ExchangeService ConnectBA(string userEmail, string userPW)

{

 ExchangeService exService = new ExchangeService

 {

 Credentials = new WebCredentials(userEmail, userPW)

 };

 //exService.TraceEnabled = true;

 //exService.TraceFlags = TraceFlags.All;

 exService.AutodiscoverUrl(userEmail, RedirectionUrlValidationCallback);

 //Console.WriteLine(exService.Url);

 return exService;

}

| OFFICE 365: The best recipes for developers |

5
(2020-04)

static bool RedirectionUrlValidationCallback(string redirectionUrl)

{

 bool validationResult = false;

 Uri redirectionUri = new Uri(redirectionUrl);

 if (redirectionUri.Scheme == "https")

 {

 validationResult = true;

 }

 return validationResult;

}

The authorization method can be called from any other routine as follows:

01.002 ID File
Routines
NuGets Microsoft.Exchange.WebServices, Microsoft.Identity.Client
Ref. DLLs Microsoft.Exchange.WebServices, Microsoft.Exchange.WebServices.Auth, Microsoft.Identity.Client
Using Microsoft.Exchange.WebServices.Data, Microsoft.Identity.Client

static void Main(string[] args)

{

 ExchangeService myExService = ConnectBA(

 ConfigurationManager.AppSettings["exUserName"],

 ConfigurationManager.AppSettings["exUserPw"]);

 CallEWSTest(myExService);

}

1.2.4. Login with oAuth for EWS and CSharp @#bm$%

Although the fact that oAuth relies on a third-party authentication provider, that the standard is more
difficult to implement than basic authentication, and that oAuth requires another layer of integration (the
application will need both, the authentication provider and the Exchange server), Microsoft recommends
using oAuth instead of basic authentication because of the advantage in security.

Since Office 365 uses Azure Active Directory (AAD) as authentication provider, any application that
wants to use Office Exchange EWS oAuth authentication must have an application ID issued by AAD.
The following steps indicate how to register one application as a public client with Azure Active Directory.

1 - Using a browser, navigate to the main administration page of Office 365
(https://admin.microsoft.com or through https://portal.office.com), log in with an
administrator account, and open the Azure Active Directory Admin Center.

| OFFICE 365: The best recipes for developers |

6
(2020-04)

https://admin.microsoft.com/
https://portal.office.com/

2 - Click on Azure Active Directory in the menu on the left side, and then on App registrations (Manage
section). Use the New registration button.

3 - Assign a name to the registration, select Accounts in this organizational directory only in the
Supported account types section, and select the Public client/native (mobile & desktop) option in the
Redirect Uri section. Write the value urn:ietf:wg:oauth:2.0:oob on the textbox at the side of the Redirect
Uri section. Use the Register button to save the registration.

4 - The registration is complete. Copy the values given in Application (client) ID and Directory (tenant)
ID to use it in the source code of the application to be developed.

The Visual Studio solution to use the authentication from oAuth (a console applications in this chapter)
requires a using directive to Microsoft.Identity.Client.

The DLLs to work with the Microsoft.Identity.Client can be installed by the NuGet
Microsoft.Identity.Client by Microsoft (https://www.nuget.org/packages
/Microsoft. Identity.Client/) directly from Visual Studio.

The function ConnectOA in the following recipe uses the Azure AD registration client and tenant ID to get
authorized in Exchange.

01.003 ID File
Routines
NuGets Microsoft.Exchange.WebServices, Microsoft.Identity.Client
Ref. DLLs Microsoft.Exchange.WebServices, Microsoft.Exchange.WebServices.Auth, Microsoft.Identity.Client
Using Microsoft.Exchange.WebServices.Data, Microsoft.Identity.Client

static async System.Threading.Tasks.Task<ExchangeService> ConnectOA(

 string AppId, string TenId)

{

 ExchangeService exService = new ExchangeService();

 PublicClientApplicationOptions pcaOptions = new PublicClientApplicationOptions

 {

 ClientId = AppId,

 TenantId = TenId

 };

 IPublicClientApplication pcaBuilder = PublicClientApplicationBuilder

 .CreateWithApplicationOptions(pcaOptions).Build();

 string[] exScope = new string[] {

 "https://outlook.office.com/EWS.AccessAsUser.All" };

 AuthenticationResult authToken = await

 pcaBuilder.AcquireTokenInteractive(exScope).ExecuteAsync();

| OFFICE 365: The best recipes for developers |

7
(2020-04)

https://www.nuget.org/packages/Microsoft
https://outlook.office.com/EWS.AccessAsUser.All

 exService.Url = new Uri("https://outlook.office365.com/EWS/Exchange.asmx");

 exService.Credentials = new OAuthCredentials(authToken.AccessToken);

 return await System.Threading.Tasks.Task.FromResult(exService);

}

The first time that the application runs, a standard login window will appear requiring the account data of
the user that made the registration. After login, the window will ask for permissions (Access your
mailboxes, Maintain access to data you have given it access to and View your basic profile).
Subsequently, the application will ask only for the user login, not for the permissions.

Because the connection routine is asynchronous, use the following code to call it.

01.004 ID File
Routines
NuGets Microsoft.Exchange.WebServices, Microsoft.Identity.Client
Ref. DLLs Microsoft.Exchange.WebServices, Microsoft.Exchange.WebServices.Auth, Microsoft.Identity.Client
Using Microsoft.Exchange.WebServices.Data, Microsoft.Identity.Client

static void Main(string[] args)

{

 ExchangeService myExService = ConnectOA(

 ConfigurationManager.AppSettings["exAppId"],

 ConfigurationManager.AppSettings["exTenantId"]).

 GetAwaiter().GetResult();

 CallEWSTest(myExService);

}

The use of oAuth to get access to Exchange is faster than the use of base authentication,
especially because it is not necessary to use the auto-discovery method.

1.2.5. Login for EWS with PowerShell and Basic Authentication @#bm$%

The ConnectPsEwsBA routine in the next recipe takes care of login in Exchange using Basic
Authentication with PowerShell.

01.005 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll

| OFFICE 365: The best recipes for developers |

8
(2020-04)

https://outlook.office365.com/EWS/Exchange.asmx

Function ConnectPsEwsBA()

{

 $ExService = New-Object Microsoft.Exchange.WebServices.Data.ExchangeService

 $ExService.Credentials = New-Object

Microsoft.Exchange.WebServices.Data.WebCredentials(`

 $configFile.appsettings.exUserName, $configFile.appsettings.exUserPw)

 $ExService.Url = new-object Uri("https://outlook.office365.com/EWS/Exchange.asmx");

 #$ExService.TraceEnabled = $true

 #$ExService.TraceFlags = [Microsoft.Exchange.WebServices.Data.TraceFlags]::All

 $ExService.AutodiscoverUrl($configFile.appsettings.exUserName, {$true})

 return $ExService

}

See section 1.2.2. to get details about login with PowerShell. The TraceEnabled and TraceFlag properties
can be activated at any moment to get information regarding the internal working of Exchange when
logging in.

To call the function, use code similar to the next example.

01.006 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll

##==> EWS Basic Authorization

Add-Type -Path "C:\Program Files\Microsoft\Exchange\Web Services\2.2

\Microsoft.Exchange.WebServices.dll"

$ExService = ConnectPsEwsBA

CallEWSTest $ExService #Calling any function

1.2.6. Login for EWS with PowerShell and oAuth @#bm$%

Using oAuth from PowerShell is not a trivial or easy endeavor. But because Basic Authentication is being
closed for Exchange, it will be obligatory to use in some years.

For this book, we use the GenericOauthEWS.ps1 login routine developed by Glen Scales
(glenscales@yahoo.com, https://gsexdev.blogspot.com/), that can be downloaded from his GitHub
repository https://github.com/gscales/Powershell-Scripts/blob/master
/GenericOauthEWS.ps1. The module is fully described in the article https://gsexdev.blogspot.com
/2018/08/dependency-free-generic-ews-oauth.html.

| OFFICE 365: The best recipes for developers |

9
(2020-04)

https://outlook.office365.com/EWS/Exchange.asmx
mailto:glenscales@yahoo.com
https://gsexdev.blogspot.com/
https://github.com/gscales/Powershell-Scripts/blob/master/GenericOauthEWS.ps1
https://gsexdev.blogspot.com/2018/08/dependency-free-generic-ews-oauth.html

The EWS DLLs required to work with oAuth and Exchange can be downloaded from
https://www.microsoft.com/en-us/download
/details.aspx?id=42951. Download the EwsManagedApi.msi file from that
site and install it locally. The DLLs will be installed in the local directory C:\Program
Files\Microsoft\Exchange\Web Services\2.2\.

To use the module, first, load it in the script and then call the Connect-Exchange method. Use the return
value to get any access to the required information.

01.007 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll

##==> EWS oAuth Authorization

Import-Module .\GenericOauthEWS.ps1 -Force

#Test-EWSConnection -MailboxName $configFile.appsettings.exUserName

$ExService = Connect-Exchange `

 $configFile.appsettings.exUserName "" $configFile.appsettings.exAppId

CallEWSTest $ExService #Calling any function

The module has a Test-EWSConnection method that can be used to check the connection with
Exchange and get some information about the account.

1.2.7. Login using the Exchange Online PowerShell @#bm$%

To work with Exchange Online PowerShell, use Windows PowerShell on the local computer to create a
remote PowerShell session with Exchange Online, providing the Office 365 credentials, the required
connection settings, and then import the Exchange Online cmdlets into the local Windows PowerShell
session.

The following function automates the complete process.

01.008 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll

Function ConnectPsOnlBA()

{

 [SecureString]$securePW = ConvertTo-SecureString -String `

 $configFile.appsettings.exUserPw -AsPlainText -Force

 $myCredentials = New-Object System.Management.Automation.PSCredential -ArgumentList `

| OFFICE 365: The best recipes for developers |

10
(2020-04)

 $configFile.appsettings.exUserName, $securePW

 $mySession = New-PSSession -ConfigurationName Microsoft.Exchange -ConnectionUri `

 https://outlook.office365.com/powershell-liveid/ -Authentication Basic `

 -AllowRedirection -Credential $myCredentials

 Import-PSSession $mySession -AllowClobber

}

To use the remote session, utilize the function as follows.

01.009 ID File
Routines
PS Modules GenericOauthEWS.ps1
Other Modules Microsoft.Exchange.WebServices.dll

##==> Exchange Online PowerShell Basic Authorization

ConnectPsOnlBA

Get-Mailbox #Calling any cmdlet

$currentSession = Get-PSSession

Remove-PSSession -Session $currentSession

The remote session is killed at the end of the code for security concerns.

Microsoft has announced that Remote PowerShell for Exchange will be closed on

October 13th, 2020 (https://techcommunity.microsoft.com/t5/blogs/
blogarticleprintpage/blog-id/Exchange/article-id/27095). Microsoft
recommends using the multi-factor authentication PowerShell module or the PowerShell
within Azure Cloud Shell to use PowerShell with Exchange, as the article mentions.

1.3. Programming Exchange with EWS and CSharp @#bm$%

To work with EWS in Visual Studio, the development computer must have the
Microsoft.Exchange.WebServices and Microsoft.Exchange.WebServices.Auth DLLs installed.

The EWS DLLs can be installed by the NuGet Microsoft.Exchange.WebServices by
Microsoft (https://www.nuget.org/packages/Microsoft.
Exchange.WebServices/) directly from Visual Studio.

| OFFICE 365: The best recipes for developers |

11
(2020-04)

https://outlook.office365.com/powershell
https://techcommunity.microsoft.com/t5/blogs/%20blogarticleprintpage/blog-id/Exchange/article-id/27095
https://www.nuget.org/packages/Microsoft

SharePoint Online Site
Collections and Webs

8. SharePoint Online Site
Collections and Webs @#bm$%

 For SharePoint Online, the Site Collection is the biggest container
for maintaining information. A Site Collection, as its name
indicates, contains at least one site (the root Web), but can host a
complete structure of subsites (the SharePoint Webs).
A Site Collection offers site users unified navigation, branding,
security, and search tools as a cohesive website experience.
The following recipes should mostly work as well for the modern
SharePoint user experience as for the classic user experience.
The cases where they use different methods will also be explained
in the text.

| OFFICE 365: The best recipes for developers |

245
(2020-04)

8.1. Introduction @#bm$%

This chapter shows the basic CRUD (Create, Read, Update, Delete) recipes to work with Site
Collections and Webs, using the SharePoint Client Object Model (CSOM), PnP, and PowerShell. Extra
information about security, configuration, etc., is also included.

All recipes use the login methods presented in Chapter 06, and the routine's code is not
repeated in this chapter. Please review Chapter 06 for login code and configuration
instruction.

All the recipes have been developed for, and tested with, Modern SharePoint Site Collections. Because
almost all the APIs were developed originally to work with the Classic SharePoint user experience, the
recipes will work generally without problems as well for the old experience of Site Collections and Webs.

8.2. Operations for modern Site Collections with the Client Side
Object Model (CSharp) @#bm$%

The SharePoint Client Side Object Model (CSOM) is designed to work with SharePoint elements from
the Site Collection level to the lowest architecture elements (Items and Documents). For this reason, the
CSOM is not able to work at the tenant level, and it has no methods to, for example, create or
enumerate Site Collections. To work with the highest rank of elements in the SharePoint hierarchy, it is
necessary to use the Microsoft.Online.SharePoint namespace. The necessary assemblies to do that
are also installed, together with the Microsoft.SharePoint.Client assemblies, when the NuGet
Microsoft.SharePointOnline.CSOM is added to the Visual Studio Solution.

The following recipes will use both namespaces indiscriminately. When operations at tenant level are
used, it is necessary to reference the administration Site of SharePoint Online, and use a SharePoint
administrator account. The login routines are the same (as indicated in Chapter 06) for employing the
administration site (http://domain-admin.sharepoint.com) or a normal Site Collection
(http://domain.sharepoint.com/sites/sitecoll); the only difference is the URL to use.

8.2.1. Creation of modern Site Collections - CSOM, CSharp@#bm$%

Only SharePoint administrator accounts can create Site Collections in SharePoint Online. There are two
types of Site Collections: based on the modern SharePoint user experience and based on the classic
experience. How to create modern team sites programmatically depends on whether it needs to be
connected to an Exchange Group or not.

For non-group connected sites, a call to a CSOM method for creating sites, and passing in the template
identifier STS#3 (for a Team Site) or SITEPAGEPUBLISHING#0 (for a Communication Site) will suffice.
For classic Site Collections, use any of the other template identifiers.

| OFFICE 365: The best recipes for developers |

246
(2020-04)

08.001 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomCreateOneSiteCollection(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 string myUser = ConfigurationManager.AppSettings["spUserName"];

 SiteCreationProperties mySiteCreationProps = new SiteCreationProperties

 {

 Url = ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewSiteCollectionModernCsCsom01",

 Title = "NewSiteCollectionModernCsCsom01",

 Owner = ConfigurationManager.AppSettings["spUserName"],

 Template = "STS#3",

 StorageMaximumLevel = 100,

 UserCodeMaximumLevel = 50

 };

 SpoOperation myOps = myTenant.CreateSite(mySiteCreationProps);

 spAdminCtx.Load(myOps, ic => ic.IsComplete);

 spAdminCtx.ExecuteQuery();

 while (myOps.IsComplete == false)

 {

 System.Threading.Thread.Sleep(5000);

 myOps.RefreshLoad();

 spAdminCtx.ExecuteQuery();

 }

}

For a Group connected modern site, create an Office 365 group first, and determine the name of the
team site to connect to, as shown in the next routine.

08.002 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomCreateGroupForSite(ClientContext spAdminCtx)

{

 string[] myOwners = new string[] { "user@domain.onmicrosoft.com" };

 GroupCreationParams myGroupParams = new GroupCreationParams(spAdminCtx);

 myGroupParams.Owners = myOwners;

 //GroupCreationParams

| OFFICE 365: The best recipes for developers |

247
(2020-04)

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.CreateGroupForSite(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewSiteCollectionModernCsCsom01",

 "GroupForNewSiteCollectionModernCsCsom01",

 "GroupForNewSiteCollAlias",

 true,

 myGroupParams);

 spAdminCtx.ExecuteQuery();

}

To find the identifiers for the different types of Site Collections, use the GetSPOTenantWebTemplates
method, indicating the language location identifier.

08.003 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomFindWebTemplates(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 SPOTenantWebTemplateCollection myTemplates =

 myTenant.GetSPOTenantWebTemplates(1033, 0);

 spAdminCtx.Load(myTemplates);

 spAdminCtx.ExecuteQuery();

 foreach (SPOTenantWebTemplate oneTemplate in myTemplates)

 {

 Console.WriteLine(oneTemplate.Name + " - " + oneTemplate.Title);

 }

}

8.2.2. Enumeration of Site Collections in the Tenant - CSOM, CSharp @#bm$%

There are no methods at the moment to enumerate modern Site Collections in SharePoint Online. To
get the classic Site Collections in the tenant, use the GetSiteProperties method.

| OFFICE 365: The best recipes for developers |

248
(2020-04)

08.004 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomReadAllSiteCollections(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.GetSiteProperties(0, true);

 SPOSitePropertiesEnumerable myProps = myTenant.GetSiteProperties(0, true);

 spAdminCtx.Load(myProps);

 spAdminCtx.ExecuteQuery();

 foreach (var oneSiteColl in myProps)

 {

 Console.WriteLine(oneSiteColl.Title + " - " + oneSiteColl.Url);

 }

}

8.2.3. Delete Site Collections from the Tenant - CSOM, CSharp@#bm$%

The RemoveSite method deletes a Site Collection from the tenant if it has no connection to an Exchange
group.

08.005 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomRemoveSiteCollection(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.RemoveSite(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewSiteCollectionModernCsCsom01");

 spAdminCtx.ExecuteQuery();

}

To recover a Site Collection that has been deleted to the Recycle Bin, use the RestoreDeletedSite
method. Take into consideration that the Recycle Bin removes its information automatically after some
time.

| OFFICE 365: The best recipes for developers |

249
(2020-04)

08.006 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomRestoreSiteCollection(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.RestoreDeletedSite(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewSiteCollectionModernCsCsom01");

 spAdminCtx.ExecuteQuery();

}

A Site Collection can be also deleted from the Recycle Bin using the RemoveDeletedSite method. That
could be necessary to create a new Site Collection with the same name as an already deleted Site
Collection.

08.007 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomRemoveDeletedSiteCollection(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.RemoveDeletedSite(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewSiteCollectionModernCsCsom01");

 spAdminCtx.ExecuteQuery();

}

8.2.4. Add users with rights to one Site Collection - CSOM, CSharp@#bm$%

The isSiteAdministrator parameter (last parameter) in the SetSiteAdmin method indicates if a newly
added account to the security settings of the Site Collection is an administrator.

| OFFICE 365: The best recipes for developers |

250
(2020-04)

08.008 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomSetAdministratorSiteCollection(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.SetSiteAdmin(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewSiteCollectionModernCsCsom01",

 "user@domain.onmicrosoft.com",

 true);

 spAdminCtx.ExecuteQuery();

}

8.2.5. Working with modern Hub Sites - CSOM, CSharp@#bm$%

A modern Hub Site Collection is a logical aggregator of Site Collections. Any modern Teams Site
Collection can be elevated to Hub Site Collection.

08.009 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomRegisterAsHubSiteCollection(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.RegisterHubSite(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewHubSiteCollCsCsom");

 spAdminCtx.ExecuteQuery();

}

In a similar way, a Site Collection can be demoted from Hub Site Collection back to normal modern Site
Collection.

| OFFICE 365: The best recipes for developers |

251
(2020-04)

08.010 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomUnregisterAsHubSiteCollection(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.UnregisterHubSite(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewHubSiteCollCsCsom");

 spAdminCtx.ExecuteQuery();

}

The GetHubSitePropertiesByUrl method gets the current information configured for a Hub Site
Collection. There is also a GetHubSitePropertiesById to recover the Hub information given its identifier.

08.011 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomGetHubSiteCollectionProperties(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 HubSiteProperties myProps = myTenant.GetHubSitePropertiesByUrl(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewHubSiteCollCsCsom");

 spAdminCtx.Load(myProps);

 spAdminCtx.ExecuteQuery();

 Console.WriteLine(myProps.Title);

}

And the same method can be used to update the metadata of the Hub.

| OFFICE 365: The best recipes for developers |

252
(2020-04)

08.012 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomUpdateHubSiteCollectionProperties(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 HubSiteProperties myProps = myTenant.GetHubSitePropertiesByUrl(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewHubSiteCollCsCsom");

 spAdminCtx.Load(myProps);

 spAdminCtx.ExecuteQuery();

 myProps.Title = myProps.Title + "_Updated";

 myProps.Update();

 spAdminCtx.Load(myProps);

 spAdminCtx.ExecuteQuery();

 Console.WriteLine(myProps.Title);

}

A normal classic Teams Site Collection can be added to the collection of Site Collections managed by a
Hub Site Collection.

08.013 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomAddSiteToHubSiteCollection(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.ConnectSiteToHubSite(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewSiteForHub",

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewHubSiteCollCsCsom");

 spAdminCtx.ExecuteQuery();

}

| OFFICE 365: The best recipes for developers |

253
(2020-04)

Any Site Collection that is in the collection of sites managed by a Hub can also be removed from the
Hub.

08.014 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomremoveSiteFromHubSiteCollection(ClientContext spAdminCtx)

{

 Tenant myTenant = new Tenant(spAdminCtx);

 myTenant.DisconnectSiteFromHubSite(

 ConfigurationManager.AppSettings["spBaseUrl"] +

 "/sites/NewSiteForHub");

 spAdminCtx.ExecuteQuery();

}

8.3. Operations for Webs in a Site Collection with the Client Side
Object Model (CSharp) @#bm$%

8.3.1. Create Web Sites in a Site Collection - CSOM, CSharp @#bm$%

Use the WebCreationInformation method to configure the parameters of a new Web Site and add it to
the Webs collection of the Site Collection. This recipe can create modern and classic experience Webs.

08.015 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomCreateOneWebInSiteCollection(ClientContext spCtx)

{

 Site mySite = spCtx.Site;

 WebCreationInformation myWebCreationInfo = new WebCreationInformation

 {

 Url = "NewWebSiteModernCsCsom",

 Title = "NewWebSiteModernCsCsom",

 Description = "NewWebSiteModernCsCsom Description",

 UseSamePermissionsAsParentSite = true,

 WebTemplate = "STS#3",

 Language = 1033

 };

| OFFICE 365: The best recipes for developers |

254
(2020-04)

 Web myWeb = mySite.RootWeb.Webs.Add(myWebCreationInfo);

 spCtx.ExecuteQuery();

}

8.3.2. Find the Webs of a Site Collection - CSOM, CSharp@#bm$%

To enumerate all the Webs in a Site Collection, recall first the Site object, and then loop through each
Web in the Webs collection.

08.016 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomGetWebsInSiteCollection(ClientContext spCtx)

{

 Site mySite = spCtx.Site;

 WebCollection myWebs = mySite.RootWeb.Webs;

 spCtx.Load(myWebs);

 spCtx.ExecuteQuery();

 foreach (Web oneWeb in myWebs)

 {

 Console.WriteLine(oneWeb.Title + " - " + oneWeb.Url + " - " + oneWeb.Id);

 }

}

To find only one of the Webs in the Site Collection, create a context using the URL of the Web directly.
Then, all its properties can be read.

08.017 ID File
Routines LoginCsom (see Ch06-s6.1)
NuGets Microsoft.SharePointOnline.CSOM
Ref. DLLs
Using Microsoft.SharePoint.Client, Microsoft.Online.SharePoint.TenantAdministration, System.IO

static void SpCsCsomGetOneWebInSiteCollection()

{

 string myWebFullUrl = ConfigurationManager.AppSettings["spUrl"] +

 "/NewWebSiteModernCsCsom";

 ClientContext spCtx = LoginCsom(myWebFullUrl);

| OFFICE 365: The best recipes for developers |

255
(2020-04)

Microsoft Teams

14. Microsoft Teams @#bm$%

 Microsoft Teams is the group collaboration application in the Office
365 suite. It helps teams to work together from one place,
integrating conversations, files, notes, and multiple other internal
and external tools. Technically speaking, Microsoft Teams is a
combination of Office 365 Exchange Groups (email, calendar,
meetings), SharePoint Online (Lists, Libraries, Sites, OneDrive),
and Skype for Business (chat, calls, video). Additionally, it is an
open based system that allows integrating external, commercial
and customized applications in the same user interface.

| OFFICE 365: The best recipes for developers |

524
(2020-04)

14.1. Introduction @#bm$%

Microsoft announced Teams in November 2016, and launched the service worldwide on 14 March 2017.
Since then, the development of the application has been stormy, adding new functionality almost every
week. At the beginning, Teams was no more than the combination of some functionality of Exchange
(Groups) and SharePoint (Libraries) in one user interface, and certain experimental extensibility options.
But because Microsoft sees Teams as a key component in its strategy for Office 365, the development
of new functionality and interoperability has been very fast. In May 2017, Microsoft announced Microsoft
Teams was replacing Microsoft Classroom in Office 365 Education; in September 2017, it was made
known that it will replace Skype for Business, and in 2018, that StaffHub will be retired and its
functionality moved to Teams.

While Teams was engulfing other products, its ability to interact with the external world was also
improving. Initially, it was only possible to add bots and a couple of connectors with external
applications, but now, it is interoperable with hundreds of applications, and developers can create new
connectors, message extensions, Webhooks, and SharePoint Framework components. Also, the
support for Microsoft Graph (using REST services) is getting better and, in April 2019, the general
availability of the Microsoft Teams PowerShell module was announced.

Although Teams is available for Office 365 Business Essentials, Business Premium,
and Enterprise E1, E3, and E5 plans, if you need a test and development Teams
instance, it is possible to create a free tenant with some limitations, but fully functional,
from https://products.office.com/en-us/microsoft-teams/free.

There are several ways to extend the functionality of Teams:

- Tabs that provide a full-screen web experience, embedded in the main presentation zone of the
Teams user interface.

- Bots that interact with members of a conversation through chat, and can respond to events.
- Webhooks and Connectors that enable external services to send and receive messages.
- Messaging extensions that allow users to interact with Web services through buttons and forms

from the Teams client user interface.
- SharePoint Framework (SPFx) components that are created as SharePoint Client WebParts.

Teams is not a hosting service: The customizations added to Teams are always hosted externally. The
package to add the functionality to Teams contains a manifest with metadata about the app (name,
icons, etc.), and pointers to the web services of the app. Also, take into consideration that any
functionality exposed in a Microsoft Teams app is publicly available over the internet. If the app provides
access to confidential or protected information, the app self should take care of authentication and
authorization.

14.2. Teams configuration for developing @#bm$%

Teams can be activated for all users from the Central Administration of Office 365. Also, the access can
be configured by the user if necessary.

| OFFICE 365: The best recipes for developers |

525
(2020-04)

https://products.office.com/en-us/microsoft-teams/free

For developing, sideloading (installation of applications without using Microsoft's application-distribution
method) must be activated at three levels before it can be used:

- From the Teams Admin Center, open the Terms apps section, click on Setup policies, and open
the Global (Org-wide default) policy. Flip the Upload custom apps button to On and save the
configuration.

- From the Teams Admin Center, open the Terms apps section and use the Org-wide app settings
button. Move the Custom apps selector to On.

- Each Team has the option Allow members to upload custom apps in the Manage Team - Settings
- Member permissions window that should be activated.

14.3. Developing for Teams and development tools @#bm$%

A customization for Teams consists of a web application of a series of JavaScript files that must be
hosted outside Teams, and a manifest that ensures the liaison between the external application and
Teams. In fact, any web application could, in theory, be connected to Teams.

The main development tool to create new functionality for Teams is Visual Studio, even though Visual
Studio Code can eventually be used as well. Microsoft has made some tools available to facilitate the
development of customizations for Teams. Additionally, other third-party tools can help, especially for
debugging.

14.3.1. Location of the Teams objects @#bm$%

The components available in the Teams client are physically located in SharePoint, Exchange, and
Skype:

Chat is formally linked to the Skype server. Skype is being replaced by Teams, and its complete
functionality will be available in Teams.

Teams is physically one Site Collections in SharePoint, plus one Group in Exchange. They can be
reached programmatically using the APIs for Teams, SharePoint, and Exchange.

Each Team has different components:

- Channels. There are two types of Channels:
o Standard (Public) Channels that use the base SharePoint Site Collection and Exchange

Group created for the Team.
o Private Channels that use the same Exchange Group as the Team, and a separated

SharePoint Site Collection. This Site Collection is not visible from the SharePoint Central
Administration page, but it can be reached programmatically as any other SharePoint Site
Collection.

Each Channel is formed of three default components:

- Conversations, that are saved in the Exchange Group. The Group API doesn't allow access to the
Conversations.

- Files, that are saved in the Documents Library of the SharePoint root site in the Site Collection.

| OFFICE 365: The best recipes for developers |

526
(2020-04)

Each Channel has one folder in the Library to save its files. Full programming access granted
using the SharePoint APIs.

- Wikies, saved as .mht files (one for each Wiki) in the Teams Wiki Data Library of SharePoint. The
.mht files are MIME HTML formatted files which save HTML, images and other linked resources
into a single file. The SharePoint APIs allow access to these files.

Calendar in Teams is the calendar of the user, saved in Exchange. It is reachable programmatically
using the Exchange APIs.

14.3.2. Teams App Studio @#bm$%

The Teams App Studio is a tool to help you build apps for Teams. It facilitates to start developing or
integrating own service, streamlines the creation of the manifest for the apps, and provides other tools
like a Card Editor and a React control library.

Teams App Studio is also an app which can be found in the Teams store. Click on the Apps button in the
Teams client and search for App Studio in the store. After installing the app, it will be reachable from the
ellipse button (...) on the left side menu of the user interface.

Microsoft has announced that the React control library in App Studio will be
deprecated in the future. It is recommended to use the Fluent-UI react controls from
https://microsoft.github.io/fluent-ui-react/.

14.3.3. Teams Developer Preview @#bm$%

The Teams Developer Preview is a Microsoft public program for developers that provides early access to
unreleased features in Teams. This allows to explore and test upcoming features for potential inclusion
in Microsoft Teams. They are provided for testing and exploration purposes only. They should not be
used in production applications.

The Developer Preview can be enabled per Teams Client; thus, it doesn't affect the entire organization,
only the instance (Teams Desktop or Teams Web application) where it is activated.

To activate the Developer Preview on a computer or web client, the uploading of apps must be activated
as described at the beginning of the section. Click on the profile button (upper right corner of the Teams
interface, the button with the picture of the user) to display the Teams menu, and then select About and
click on Developer preview to turn it on or off.

The manifest used for customized components must have the property manifestVersion with the value
devPreview. The functionality available changes very often and sometimes it is not documented by
Microsoft.

| OFFICE 365: The best recipes for developers |

527
(2020-04)

Using the devPreview schema disallows the use of App Studio and the possibility to
upload apps for testing. To upload an application, click the More apps icon on the app
bar, then select the Upload a custom app link. This method only permits to upload a
zipped version of the app package.

14.3.4. ngrok @#bm$%

To load custom Team apps, the app must be available from the internet; it cannot be used running from
a local IIS. There are two possibilities to make the Teams app in development reachable from the
internet: Hosting the app in a public server, such as Microsoft Azure, or creating a tunnel to the local
process on the development machine using ngrok, an application (available for Windows, Linux and
Mac) that creates public URLs for testing of software that runs in a local development computer.

Tunneling using ngrok is valid for testing running the app on the local machine, and
creates a tunnel to it through a public web endpoint, but it is not suitable for production.
When using the Teams App Studio to create the manifest, a message will appear
indicating this. The message can be voided for testing, but not when the application will
be deployed for production.

ngrok is a free tool that can be downloaded from https://ngrok.com/download. Unzip ngrok to a
directory in the development computer. Run the Teams app under development from Visual Studio: The
app will be available locally from a URL like http://localhost:3333. Open a PowerShell console,
relocate the pointer to the folder where ngrok is unzipped, and run it using the syntax:

 .\ngrok.exe http 3333 -host-header=localhost:3333

Ensure that you use the same port for the http parameter and the localhost parameter. The console will
respond indicating the external URL generated from ngrok in the form of
http(s)://[identifier].ngrok.io. For the free version of ngrok, a session can expand for max 8
hours (it is not necessary to register in the ngrok site to use the free version). From this moment, the
application available locally under the URL http://localhost:3333 will be also available from the
public internet URL http(s)://[identifier].ngrok.io. To stop the tunnel, use the command Ctrl-c.

ngrok provides a real-time web user interface as well, to gather all the HTTP traffic running over the
tunnel. After starting ngrok, open the URL given under Web Interface in the PowerShell window (for
example, http://127.0.0.1:4040) in a web browser to review all the traffic details.

| OFFICE 365: The best recipes for developers |

528
(2020-04)

https://ngrok.com/download
http://localhost:3333/
http://localhost:3333/

To host Webs for testing or production, the Azure Web Apps Service
(https://azure.microsoft.com/en-us/services/app-service/web/)
provides ready to use hosting environments, where all the infrastructure is delivered by
Microsoft. There are diverse price tiers, including one for free.

14.3.5. Cards @#bm$%

Cards are an open format that enables developers to exchange content for user interfaces in a
commonly and consistently way. Cards are used in messages, bots, emails, and any kind of application
that needs to show information for users. There are eight types of Cards available for Teams: Adaptive,
Hero, List, Office 365 Connector, Receipt, Signin, Thumbnail, and Collections. No type can be used for
any other type of application: Teams Connectors, for example, only accept Cards of the Office 365
Connector type.

Cards are described as JSON objects with a defined syntax. Microsoft provides extensive information
about Adaptive Cards in its site https://docs.microsoft.com/en-us/adaptive-cards/.

The Teams App Studio tool (see section 3.1 in this chapter) contains a section to
create the JSON for Hero, Thumbnail, and Adaptive Cards. It can inclusively
generate the CSharp code to insert directly in the code for Teams apps.

For Message and Adaptive Cards, the Microsoft site
https://messagecardplayground.azurewebsites.net offers several examples showing the JSON
code and the Card result. This site is becoming replaced by the Microsoft site
https://amdesigner.azurewebsites.net, that also has several examples and a Card generator but
only for Adaptive Cards.

Working from CSharp, it is easier to use the NuGet AdaptiveCards than to parse JSON
code manually (https://www.nuget.org/packages/AdaptiveCards/). This is a
library that implements classes for building and serializing Adaptive Card objects from
code (only for Adaptive Cards).

14.4. Teams Tabs @#bm$%

Tabs are Web pages embedded in Microsoft Teams. There are two types of Tabs available in Teams:

- Personal Tabs are scoped to a single user. They are pinned to the left navigation bar, under the
ellipse (...) button.

- Channel/Group Tabs deliver content to channels and group chats. They are pinned to the
top-horizontal bar (Tabs bar).

The Web pages to be used for Tabs must be hosted as HTTPS (secure socket layers) and able to be
embedded in an iFrame by the Teams client.

| OFFICE 365: The best recipes for developers |

529
(2020-04)

https://azure.microsoft.com/en-us/services/app-service/web/
https://docs.microsoft.com/en-us/adaptive-cards/
https://messagecardplayground.azurewebsites.net/
https://amdesigner.azurewebsites.net/
https://www.nuget.org/packages/AdaptiveCards/

14.4.1. Personal Tabs @#bm$%

Fundamentally, Tabs with a personal scope consist of Web pages that are framed within the Teams
client, and that are accessible after installation from the ellipse menu at the left side of the Teams
interface.

Any public Web page can be set as Personal Tab. For the next example, Visual Studio is used to create
a .NET Framework ASP.NET Web Forms application, but an MVC application using .NET Framework or
.NET Core would suffice as well.

Start Visual Studio and create a new solution of the type ASP.NET Web Application (.Net Framework).
Select Empty as the type project, select Web Forms in the Core references menu, and deselect
Configure for HTTPS.

Add a new Web Form called GenerateGuid.aspx to the solution. This will be the page with the
functionality for the Tab. There are one button and two labels in the aspx page, one for the new GUID
and other to show information from the context. The styles from the .css file are used for styling.

14.001 ID File

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="GenerateGuid.aspx.cs"

 Inherits="KKJA.GenerateGuid" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

 <script src="https://statics.teams.microsoft.com/sdk/v1.0/js/MicrosoftTeams.min.js"

 type="text/javascript"></script>

 <script src="GenerateAppScripts.js" type="text/javascript"></script>

 <link rel="stylesheet" href="GenerateThemes.css" type="text/css" />

</head>

<body class="theme-light">

 <form id="form1" runat="server">

 <div class="surface font-semibold font-title"><h2>Generate a new GUID</h2></div>

 <div>

 <p>

 <asp:Button ID="btnGenerateGuid" runat="server" Text="Generate"

 OnClick="btnGenerateGuid_Click" />

 </p>

 <p class="surface">

 <asp:Label ID="lblNewGuid" runat="server" Text=""></asp:Label>

 <asp:Label ID="lblContextInfo" runat="server" Text=""></asp:Label>

 </p>

 </div>

 </form>

| OFFICE 365: The best recipes for developers |

530
(2020-04)

http://www.w3.org/1999/xhtml
https://statics.teams.microsoft.com/sdk/v1.0/js/MicrosoftTeams.min.js

</body>

</html>

The .aspx page has a reference to the MicrosoftTeams.min.js file from the team's Content Distribution
Network (CDN). This file belongs to the Team's JavaScript client SDK, a part of the Microsoft Teams
developer platform, and it contains methods to facilitate the integration of custom services with Teams.
There is also a reference to the custom stylesheet file GenerateThemes.css that contains all the styling
classes for the Teams themes, and a reference to the GenerateAppScripts.js containing the JavaScript
routine that initializes the Team's client SDK, checks the initial theme chosen by the user and maintains
it applied, defines the event handler for the change of themes, and sets a theme when the change of
theme event is detected. The context contains some information about Teams, the user and the session;
the label lblContextInfo shows, for example, the value of the loginHint property present in the context.

14.002 ID File
Other Modules MicrosoftTeams.min.js

(function () {

 'use strict';

 microsoftTeams.initialize();

 microsoftTeams.getContext(function (context) {

 if (context && context.theme) {

 document.getElementById('lblContextInfo').innerText = context.loginHint;

 setTheme(context.theme);

 }

 });

 microsoftTeams.registerOnThemeChangeHandler(function (theme) {

 setTheme(theme);

 });

 function setTheme(theme) {

 if (theme) {

 // Possible values for theme: 'default', 'light', 'dark' and 'contrast'

 document.body.className = 'theme-' + (theme === 'default' ? 'light' : theme);

 }

 }

})();

The GenerateThemes.css file is too long (more than 1200 lines code) to be printed in
the book. You can find it in the KKJA repo in the book's GitHub site.

| OFFICE 365: The best recipes for developers |

531
(2020-04)

The code-behind file for the .aspx page generates a GUID when the button is used and shows its value
in the label.

14.003 ID File
Routines
NuGets
Ref. DLLs
Using

protected void btnGenerateGuid_Click(object sender, EventArgs e)

{

 lblNewGuid.Text = Guid.NewGuid().ToString();

}

Two other aspx pages are necessary: One to show the privacy statement, and another for the terms of
use. In this example, there is only some text in the pages, but any kind of functionality can be used.

14.004 ID File

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Privacy.aspx.cs"

 Inherits="KKJA.Privacy" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

 <script src="https://statics.teams.microsoft.com/sdk/v1.0/js/MicrosoftTeams.min.js"

 type="text/javascript"></script>

 <script src="GenerateAppScripts.js" type="text/javascript"></script>

 <link rel="stylesheet" href="GenerateThemes.css" type="text/css" />

</head>

<body class="theme-light">

 <form id="form1" runat="server">

 <div>

 This is the Privacy Statement page

 </div>

 </form>

</body>

</html>

| OFFICE 365: The best recipes for developers |

532
(2020-04)

http://www.w3.org/1999/xhtml
https://statics.teams.microsoft.com/sdk/v1.0/js/MicrosoftTeams.min.js

14.005 ID File

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Terms.aspx.cs"

Inherits="KKJA.Terms" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

 <script src="https://statics.teams.microsoft.com/sdk/v1.0/js/MicrosoftTeams.min.js"

 type="text/javascript"></script>

 <script src="GenerateAppScripts.js" type="text/javascript"></script>

 <link rel="stylesheet" href="GenerateThemes.css" type="text/css" />

</head>

<body class="theme-light">

 <form id="form1" runat="server">

 <div>

 This is the Terms of Use page

 </div>

 </form>

</body>

</html>

Run the project from Visual Studio and take note of the port used by IIS Express. Start ngrok as
indicated in section 4.3 of this chapter, using the port number from IIS Express.

Ensure that you are using the HTTP port of IIS when the project is running, and not the
HTTPS because ngrok forwards the request to the HTTP port.

Open Teams (the desktop or web client) and open the App Studio. Open the Manifest editor tab and
click on the Create a new app button. In the App details section, define the Short name and Long name
of the application (any combination of strings) and click on the Generate button under the Identification
section. Then define a Package Name and Version, Description, Long description, Name and Website of
the developer. In the App URLs box copy the ngrok URL extended with the file names of the privacy and
terms pages.

Click on the Tabs button under Capabilities, and then on the Add button for Add a personal tab. On the
new window, define a Name for the tab, a unique string for the Entity ID (it can be any string, but it must
be unique), and add the ngrok URL for the content page of the application in the Content URL and
Website URL boxes.

Finally, click on the Test and distribute button under the Finish section. If there are errors in the

| OFFICE 365: The best recipes for developers |

533
(2020-04)

http://www.w3.org/1999/xhtml
https://statics.teams.microsoft.com/sdk/v1.0/js/MicrosoftTeams.min.js

information, the validation will show them. Use the Install button, and Teams will show the Personal Tab
application. The manifest can be downloaded, and it will be like the next one.

{
 "$schema": "https://developer.microsoft.com/en-us/json-schemas/teams
/v1.5/MicrosoftTeams.schema.json",
 "manifestVersion": "1.5",
 "version": "1.0.0",
 "id": "48cb3b67-6afb-49e2-be45-d3bdc34aef10",
 "packageName": "bookPersonalTab",
 "developer": {
 "name": "gavd",
 "websiteUrl": "https://43b609a6.ngrok.io/generateguid.aspx",
 "privacyUrl": "https://43b609a6.ngrok.io/privacy.aspx",
 "termsOfUseUrl": "https://43b609a6.ngrok.io/terms.aspx"
 },
 "icons": {
 "color": "color.png",
 "outline": "outline.png"
 },
 "name": {
 "short": "PersonalTab",
 "full": "Personal Tab for the book"
 },
 "description": {
 "short": "Personal Tab for the book",
 "full": "This is the Personal Tab for the book"
 },
 "accentColor": "#FFFFFF",
 "staticTabs": [
 {
 "entityId": "guidGenerator01",
 "name": "GuidGenerator",
 "contentUrl": "https://43b609a6.ngrok.io/generateguid.aspx",
 "websiteUrl": "https://43b609a6.ngrok.io/generateguid.aspx",
 "scopes": [
 "personal"
]
 }
],
 "permissions": [
 "identity",
 "messageTeamMembers"
],
 "validDomains": [
 "43b609a6.ngrok.io"
]
}

| OFFICE 365: The best recipes for developers |

534
(2020-04)

	O365Dev
	1. Exchange Online
	1.1. Introduction to developing for Exchange
	1.2. Login in Exchange
	1.2.1. Login from a managed language (CSharp)
	1.2.2. Login from PowerShell
	1.2.3. Login with user credentials for EWS (Basic Authentication) and CSharp
	1.2.4. Login with oAuth for EWS and CSharp
	1.2.5. Login for EWS with PowerShell and Basic Authentication
	1.2.6. Login for EWS with PowerShell and oAuth
	1.2.7. Login using the Exchange Online PowerShell

	1.3. Programming Exchange with EWS and CSharp
	1.3.1. Folders and folder structure using EWS
	1.3.2. Working with emails
	1.3.3. Using contacts in Exchange
	1.3.4. Developing for calendars in Exchange with EWS

	1.4. Programming Exchange with EWS and PowerShell
	1.4.1. Working with Exchange Folders using EWS and PowerShell
	1.4.2. Using emails with EWS and PowerShell
	1.4.3. Programming the Exchange contacts with PowerShell and EWS
	1.4.4. Approaching the Calendar with EWS and PowerShell

	1.5. Tools to work with EWS
	1.6. Using Exchange Online PowerShell

	2. Microsoft Word Online
	2.1. Introduction to developing for the Office 365 clients
	2.2. Introduction to OpenXML for Word
	 2.3. Working with Word documents and OpenXML (CSharp)
	2.3.1. Creation of Word documents with OpenXML
	2.3.2. Read and add text to a Word document
	2.3.3. The Word document properties
	2.3.4. Creating and adding styles in a Word document
	2.3.5. Word document headers and footers
	2.3.6. Working with comments in Word documents
	2.3.7. Tables and content in Word documents
	2.3.8. Word documents with images
	2.3.9. Other operations with OpenXML and Word documents

	 2.4. Introduction to Word Visual Studio Tools for Office (VSTO)
	2.5. Developing VSTO applications for Word Office 365
	2.5.1. Basic Word VSTO Add-in
	2.5.2. Modifying the Ribbon with a Word VSTO Add-in
	2.5.3. Basic VSTO document-level customization

	2.6. Introduction to Word Web Add-ins
	 2.7. Developing Word Web Add-ins for Office 365 with Visual
	2.7.1. Basic Web Add-in for Word Office 365
	2.7.2. Word Web Add-in calling a REST service

	3. Microsoft Excel Online
	3.1. Introduction
	3.1.1. Different forms of Excel Add-Ins
	3.1.2. The Developer Tab in Office 365

	3.2. Introduction to OpenXML
	 3.3. Working with Excel spreadsheets and OpenXML (CSharp)
	3.3.1. Creation of Excel spreadsheets with OpenXML
	3.3.2. Add cells and values to spreadsheets with OpenXML
	3.3.3. Read the cell values in a spreadsheet
	3.3.4. Update a cell value in a spreadsheet
	3.3.5. Find all sheets in a spreadsheet
	3.3.6. Find hidden columns and rows in a spreadsheet
	3.3.7. Adding charts to a spreadsheet

	 3.4. Introduction to Excel Visual Studio Tools for Office (VSTO)
	3.5. Developing VSTO applications for Excel Office 365
	3.5.1. Basic Excel VSTO Add-in
	3.5.2. Adding and using panels with a VSTO Add-in for Excel
	3.5.3. Basic VSTO Excel document-level customization

	3.6. Introduction to Excel Web Add-ins
	 3.7. Developing Excel Web Add-ins for Office 365 with Visual Studio
	3.7.1. Basic Web Add-ins for Excel Office 365
	3.7.2. Excel Web Add-in calling a REST service

	3.8. Using external libraries to work with Excel
	3.8.1. Create a new Excel spreadsheet and set cells using EPPlus
	3.8.2. Read the value of one cell
	3.8.3. Update the cell values with EPPlus
	3.8.4. Creation of charts
	3.8.5. Adding graphics and styles to spreadsheets
	3.8.6. Working with formulas in spreadsheets using EPPlus

	4. Microsoft PowerPoint Online
	4.1. Introduction
	4.2. Introduction to OpenXML
	4.3. Working with PowerPoint presentation and OpenXML (CSharp)
	4.3.1. Creation of PowerPoint presentations with OpenXML
	4.3.2. Find text in one slide
	4.3.3. Change the theme of a presentation
	4.3.4. Working with slides in a PowerPoint presentation
	4.3.5. Working with comments in presentations
	4.3.6. Working with notes in slides
	4.3.7. Add pictures and shapes to a slide in the presentation

	 4.4. Introduction to Visual Studio Tools for Office (VSTO) and
	4.5. Developing customizations for PowerPoint with VSTO
	4.5.1. Basic PowerPoint VSTO Add-in

	4.6. Introduction to PowerPoint Web Add-ins
	 4.7. Developing Web Add-ins for PowerPoint presentations
	4.7.1. Basic Web Add-ins for PowerPoint
	4.7.2. PowerPoint presentations getting data from a REST service

	5. Microsoft Outlook Online
	5.2. Using Outlook Visual Studio Tools for Office (VSTO)
	5.2.1. Introduction of VSTO for Outlook
	5.2.2. Limitations of VSTO in Outlook
	5.2.3. Basic VSTO Add-in applications for Outlook 365
	5.2.4. Modifying the Outlook ribbon
	5.2.5. Working with emails and VSTO
	5.2.6. Outlook Contacts through VSTO
	5.2.7. Programming the Outlook Calendar with VSTO
	5.2.8. Folders in Outlook and VSTO

	5.3. Outlook Web Add-ins
	5.3.1. Introduction to Outlook Web Add-ins
	5.3.2. Basic Outlook Web Add-in
	5.3.3. Getting information from a REST service inside an Outlook Add-in

	6. SharePoint Introduction and
	 6.1. Login (CSharp) using the SharePoint Client Object Model
	6.2. Login (CSharp) using PnP Core
	6.3. Login (CSharp) to use REST
	6.4. Login (PowerShell) using CSOM
	 6.5. Login (PowerShell) using the SharePoint Online SPO
	6.6. Login (PowerShell) using PnP for SharePoint Online
	6.7. Login (PowerShell) to use REST

	7. SharePoint Online Tenant
	7.1. Introduction
	 7.2. Working with the tenant and the Client Side Object Model
	7.2.1. Retrieve the tenant properties configuration - CSOM, CSharp
	7.2.2. Update the tenant properties configuration - CSOM, CSharp

	7.3. Approaching the tenant using REST (CSharp)
	7.3.1. Find the App Catalog URL - REST, CSharp
	7.3.2. Find tenant properties - REST, CSharp

	 7.4. Working in the tenant using PowerShell CSOM (PowerShell)
	7.4.1. Tenant properties configuration - CSOM, PowerShell
	7.4.2. Update the tenant properties configuration - CSOM, PowerShell

	7.5. Approaching the tenant using REST (PowerShell)
	7.5.1. Find the App Catalog URL - REST, PowerShell
	7.5.2. Find tenant properties - REST, PowerShell

	7.6. Using SPO cmdlets for the tenant (PowerShell)
	7.6.1. Retrieve and modify tenant properties - SPO, PowerShell
	7.6.2. Get the tenant error logs - SPO, PowerShell
	7.6.3. Working with the CDN - SPO, PowerShell
	7.6.4. Tenant properties in the App Catalog - SPO, PowerShell

	8. SharePoint Online Site
	8.1. Introduction
	 8.2. Operations for modern Site Collections with the Client Side
	8.2.1. Creation of modern Site Collections - CSOM, CSharp
	8.2.2. Enumeration of Site Collections in the Tenant - CSOM, CSharp
	8.2.3. Delete Site Collections from the Tenant - CSOM, CSharp
	8.2.4. Add users with rights to one Site Collection - CSOM, CSharp
	8.2.5. Working with modern Hub Sites - CSOM, CSharp

	 8.3. Operations for Webs in a Site Collection with the Client Side
	8.3.1. Create Web Sites in a Site Collection - CSOM, CSharp
	8.3.2. Find the Webs of a Site Collection - CSOM, CSharp
	8.3.3. Update one Web in a Site Collection - CSOM, CSharp
	8.3.4. Delete one Web from a Site Collection - CSOM, CSharp
	8.3.5. Break and Reset the security inheritance of a Web Site - CSOM, CSharp
	8.3.6. Add, update and delete users to the security configuration of a Web Site -

	 8.4. CRUD operations for Site Collections and Webs using PnP Core
	8.4.1. Create Site Collections and Web sites - PnPCore, CSharp
	8.4.2. Enumerate all Webs in a Site Collection - PnPCore, CSharp
	8.4.3. Operations with PnPCore for Site Collections and Webs - PnPCore,

	 8.5. CRUD operations using REST for Site Collections and Webs
	8.5.1. Creating Site Collections and Webs inside Site Collections - REST, CSharp
	8.5.2. Enumerate Site Collections and Webs - REST, CSharp
	8.5.3. Update the properties of a Web - REST, CSharp
	8.5.4. Delete Webs from Site Collections - REST, CSharp
	8.5.5. Permissions in a Web - REST, CSharp
	8.5.6. Break and reset the security inheritance of Webs - REST, CSharp
	8.5.7. Add, update and delete users in Webs - REST, CSharp

	 8.6. Working with Site Collections using PowerShell
	8.6.1. Creation of modern Site Collections - CSOM, PowerShell
	8.6.2. Enumeration of Site Collections in the Tenant - CSOM, PowerShell
	8.6.3. Delete Site Collections from the Tenant - CSOM, PowerShell
	8.6.4. Add users with rights to one Site Collection - CSOM, PowerShell
	8.6.5. Working with modern Hub Sites - CSOM, PowerShell

	 8.7. PowerShell CSOM used to work with Webs (PowerShell)
	8.7.1. Create Web Sites in a Site Collection - CSOM, PowerShell
	8.7.2. Find the Webs of a Site Collection - CSOM, PowerShell
	8.7.3. Update one Web in a Site Collection - CSOM, PowerShell
	8.7.4. Delete one Web from a Site Collection - CSOM, PowerShell
	8.7.5. Break and Reset the security inheritance of a Web Site - CSOM, PowerShell
	8.7.6. Add, update and delete users to the security configuration of a Web Site -

	 8.8. Operations for Site Collections using PowerShell PnP
	8.8.1. Create Site Collections - PnP, PowerShell
	8.8.2. Retrieve Site Collections - PnP, PowerShell
	8.8.3. Update Site Collections - PnP, PowerShell
	8.8.4. Delete Site Collections - PnP, PowerShell
	8.8.5. Working with Hub Site Collections - PnP, PowerShell
	8.8.6. Rights and Permissions for Site Collections - PnP, PowerShell

	 8.9. Operations for Webs using PowerShell PnP (PowerShell)
	8.9.1. Creation of Webs in Site Collections - PnP, PowerShell
	8.9.2. Enumerate Webs in a Site Collection - PnP, PowerShell
	8.9.3. Update properties in Webs - PnP, PowerShell
	8.9.4. Deleting Web from Site Collections - PnP, PowerShell
	8.9.5. Security permissions for a Web - PnP, PowerShell

	 8.10. Operations for Site Collections using SharePoint Online (SPO)
	8.10.1. Create, test and repair Site Collections - SPO, PowerShell
	8.10.2. Find Site Collections - SPO, PowerShell
	8.10.3. Update Site Collections - SPO, PowerShell
	8.10.4. Delete Site Collections - SPO, PowerShell
	8.10.5. Working with Hub Site Collections - SPO, PowerShell
	8.10.6. Security-related cmdlets for users - SPO, PowerShell
	8.10.7. Security-related cmdlets for groups - SPO, PowerShell

	8.11. CRUD operations for Site Collections and Webs using
	8.11.1. Creating Site Collections and Webs inside Site Collections - REST,
	8.11.2. Enumerate the Site Collections and Webs - REST, PowerShell
	8.11.3. Update methods for a Web - REST, PowerShell
	8.11.4. Delete Webs from Site Collections - REST, PowerShell
	8.11.5. Permissions for users in a Web - REST, PowerShell
	8.11.6. Break and reset the security inheritance of Webs - REST, PowerShell
	8.11.7. Add, update and delete users to the security of Webs - REST, PowerShell

	9. SharePoint Online Lists and
	9.1. Introduction
	 9.2. CRUD operations for Lists with the Client Side Object Model
	9.2.1. List creation - CSOM, CSharp
	9.2.2. List find and read properties - CSOM, CSharp
	9.2.3. List Update - CSOM, CSharp
	9.2.4. List Delete - CSOM, CSharp
	9.2.5. Add one Field to a List - CSOM, CSharp
	9.2.6. Read the Fields in a List - CSOM, CSharp
	9.2.7. Update one List Field - CSOM, CSharp
	9.2.8. Eliminate one Field from a List - CSOM, CSharp
	9.2.9. Break and Reset the List's Security Inheritance - CSOM, CSharp
	9.2.10. Add one user with permissions to the List's Security - CSOM,
	9.2.11. Update the user permissions in the List's Security - CSOM,
	9.2.12. Delete one user from the Security for the List - CSOM, CSharp

	9.3. CRUD operations for Lists with PnPCore (CSharp)
	9.3.1. List creation - PnPCore, CSharp
	9.3.2. List find and read properties - PnPCore, CSharp
	9.3.3. List Exists - PnPCore, CSharp
	9.3.4. Add one Field to a List - PnPCore, CSharp
	9.3.5. Read the Fields in a List - PnPCore, CSharp
	9.3.6. Add permissions to the List - PnPCore, CSharp
	9.3.7. Get one Content Type used in the List - PnPCore, CSharp
	9.3.8. Add one Content Type to a List - PnPCore, CSharp
	9.3.9. Eliminate one Content Type from a List - PnPCore, CSharp
	9.3.10. Find one View for a List - PnPCore, CSharp
	9.3.11. Create Views for Lists - PnPCore, CSharp

	9.4. CRUD operations for Lists with REST (CSharp)
	9.4.1. List creation - REST, CSharp
	9.4.2. List find and read properties - REST, CSharp
	9.4.3. List Update - REST, CSharp
	9.4.4. List Delete - REST, CSharp
	9.4.5. Add one Field to a List - REST, CSharp
	9.4.6. Read the Fields in a List - REST, CSharp
	9.4.7. Update one List Field - REST, CSharp
	9.4.8. Eliminate one Field from a List - REST, CSharp
	9.4.9. Break and Reset the List's Security Inheritance - REST, CSharp
	9.4.10. Add one user with permissions to the List's Security - REST,
	9.4.11. Update the user permissions in the List's Security - REST, CSharp
	9.4.12. Delete one user from the Security for the List - REST, CSharp

	 9.5. CRUD operations for Lists with PowerShell CSOM (PowerShell)
	9.5.1. List creation - CSOM, PowerShell
	9.5.2. Find a List and read its properties - CSOM, PowerShell
	9.5.3. List Update - CSOM, PowerShell
	9.5.4. List Delete - CSOM, PowerShell
	9.5.5. Add one Field to a List - CSOM, PowerShell
	9.5.6. Retrieve the Fields in a List - CSOM, PowerShell
	9.5.7. Update one List Field - CSOM, PowerShell
	9.5.8. Eliminate one Field from a List - CSOM, PowerShell
	9.5.9. Break and Reset the List's Security Inheritance - CSOM,
	9.5.10. Add one user with permissions to the List's Security - CSOM,
	9.5.11. Update the user permissions in the List's Security - CSOM,
	9.5.12. Delete one user from the Security for the List - CSOM, PowerShell

	 9.6. CRUD operations for Lists with PnP PowerShell (PowerShell)
	9.6.1. List creation - PnP, PowerShell
	9.6.2. List find and read properties - PnP, PowerShell
	9.6.3. List Update - PnP, PowerShell
	9.6.4. List Delete - PnP, PowerShell
	9.6.5. Add one Field to a List - PnP, PowerShell
	9.6.6. Read the Fields in a List - PnP, PowerShell
	9.6.7. Update one List Field - PnP, PowerShell
	9.6.8. Eliminate one Field from a List - PnP, PowerShell

	 9.7. CRUD operations for Lists with REST and PowerShell
	9.7.1. List creation - REST, PowerShell
	9.7.2. List find and read properties - REST, PowerShell
	9.7.3. List Update - REST, PowerShell
	9.7.4. List Delete - REST, PowerShell
	9.7.5. Add one Field to a List - REST, PowerShell
	9.7.6. Read the Fields in a List - REST, PowerShell
	9.7.7. Update one List Field - REST, PowerShell
	9.7.8. Eliminate one Field from a List - REST, PowerShell
	9.7.9. Break and Reset the List's Security Inheritance - REST,
	9.7.10. Add one user with permissions to the List's Security - REST,
	9.7.11. Update the user permissions in the List's Security - REST,
	9.7.12. Delete one user from the Security for the List - REST, CSharp

	10. SharePoint Online Items and
	10.1. Introduction
	 10.2. Operations for Items and Documents with the Client Side
	10.2.1. Items creation - CSOM, CSharp
	10.2.2. Documents upload - CSOM, CSharp
	10.2.3. Documents download - CSOM, CSharp
	10.2.4. Find Items and read their properties - CSOM, CSharp
	10.2.5. Find Files and read their properties - CSOM, CSharp
	10.2.6. Update List Items - CSOM, CSharp
	10.2.7. Update Document properties - CSOM, CSharp
	10.2.8. Delete List Items - CSOM, CSharp
	10.2.9. Delete Documents - CSOM, CSharp
	10.2.10. Break and reset the Item's and File's security inheritance - CSOM,
	10.2.11. Add one user with permissions to the Items and Documents - CSOM,
	10.2.12. Update the user permissions for Items and Documents - CSOM,
	10.2.13. Delete one user from the Item's and Document's Security - CSOM,

	 10.3. Operations for Items and Documents with PnPCore (CSharp)
	10.3.1. Property Bag key creation - PnPCore, CSharp
	10.3.2. Reading a Property Bag key - PnPCore, CSharp
	10.3.3. Property Bag entry exists - PnPCore, CSharp
	10.3.4. Indexing and reading indexed Property Bag entries - PnPCore,
	10.3.5. Delete one Property Bag entry - PnPCore, CSharp

	 10.4. Operations for Items and Documents with REST (CSharp)
	10.4.1. Items creation - REST, CSharp
	10.4.2. Documents upload - REST, CSharp
	10.4.3. Documents download - REST, CSharp
	10.4.4. Find Items and read their properties - REST, CSharp
	10.4.5. Find Documents in a Library and read their properties - REST, CSharp
	10.4.6. Update List Items and Files in a Library - REST, CSharp
	10.4.7. Delete List Items - REST, CSharp
	10.4.8. Break and reset the Item's and Document's security inheritance - REST,
	10.4.9. Add one user with permissions to the Item's and Document's Security -
	10.4.10. Update the user permissions for the Item's and Document's Security -
	10.4.11. Delete one user from the Item's and Document's Security - REST,

	10.5. Operations for Items and Documents with PowerShell CSOM
	10.5.1. List Item creation - CSOM, PowerShell
	10.5.2. Documents upload - CSOM, PowerShell
	10.5.3. Documents download - CSOM, PowerShell
	10.5.4. Find Items and Files, and read their properties - CSOM, PowerShell
	10.5.5. Update List Items - CSOM, PowerShell
	10.5.6. Delete List Items - CSOM, PowerShell
	10.5.7. Break and reset the Item's and Document's security inheritance - CSOM,
	10.5.8. Add one user with permissions to the Item's and Document's Security -
	10.5.9. Update the user permissions for the Item's and File's Security - CSOM,
	10.5.10. Delete one user from the Item's and Document's Security - CSOM,

	 10.6. Operations for Items and Files with PnP PowerShell
	10.6.1. Items creation - PnP, PowerShell
	10.6.2. Documents upload - PnP, PowerShell
	10.6.3. Documents download - PnP, PowerShell
	10.6.4. Find and enumerate Items - PnP, PowerShell
	10.6.5. Find, copy and move Files in Libraries - PnP, PowerShell
	10.6.6. Update List Items and Documents - PnP, PowerShell
	10.6.7. Delete List Items and Library Documents - PnP, PowerShell
	10.6.8. Security for Items and Documents - PnP, PowerShell

	 10.7. Operations for Items and Documents with REST and
	10.7.1. Items creation - REST, PowerShell
	10.7.2. Documents upload - REST, PowerShell
	10.7.3. Documents download - REST, PowerShell
	10.7.4. Find Items and Files, and read their properties - REST, PowerShell
	10.7.5. Update List Items - REST, PowerShell
	10.7.6. Delete List Items and Library files - REST, PowerShell
	10.7.7. Break and reset the Item's and Document's security inheritance - REST,
	10.7.8. Add one user with permissions to the Item's and Document's Security -
	10.7.9. Update the user permissions for the Item's and Document's Security -
	10.7.10. Delete one user from the Item's and Document's Security - REST,

	11. SharePoint Online - Other
	11.2. The Term Store
	11.2.1. Using the SharePoint Client Side Object Model programmatically to work
	11.2.2. Using PnPCore with the Term Store (CSharp)
	11.2.3. Using PowerShell and the CSOM for the Term Store (PowerShell)
	11.2.4. Using PowerShell PnP with the Term Store (PowerShell)

	11.3. Search
	11.3.1. Search and the SharePoint Client Side Object Model (CSharp)
	11.3.2. Using REST to access the SharePoint Search Engine (CSharp)
	11.3.3. Calling the Search Engine with PowerShell and the CSOM (PowerShell)
	11.3.4. PowerShell PnP to access the SharePoint Search Engine (PowerShell)
	11.3.5. PowerShell and REST to call the Search Engine (PowerShell)

	11.4. User Profile
	11.4.1. Approaching the User Profile with CSOM (CSharp)
	11.4.2. REST to access the User Profile (CSharp)
	11.4.3. Using CSOM PowerShell to reach the User Profile (PowerShell)
	11.4.4. Using PnP PowerShell to reach the User Profile (PowerShell)
	11.4.5. PowerShell and REST to access the User Profile (PowerShell)

	12. SharePoint Online - SPFx
	12.1. Introduction
	12.2. SPFx WebParts
	12.2.1. Basic SPFx WebPart
	12.2.2. CRUD with SPFx WebParts (JavaScript and REST)
	12.2.3. Adding external libraries to an SPFx solution
	12.2.4. CRUD with SPFx WebParts (JavaScript and PnPjs)
	12.2.5. Other examples of PnPjs routines for SPFx WebParts

	12.3. SPFx Extensions
	12.3.1. Basic Application Customizer SPFx Extension
	12.3.2. Basic Field Customizer SPFx Extension
	12.3.3. Basic ListView Command Set SPFx Extension

	13. SharePoint Online - Add-ins
	13.1. Introduction
	13.1.1. Developing SharePoint Add-ins

	13.2. SharePoint Hosted Add-ins
	13.2.1. Basic (immersive) SharePoint Hosted Add-in
	13.2.2. AppPart SharePoint Hosted Add-ins
	13.2.3. Custom Action SharePoint Hosted Add-ins
	13.2.4. Deploying SharePoint Hosted Add-ins to SharePoint Online

	13.3. Provider Hosted Add-ins
	13.3.1. Basic (immersive) Provider Hosted SharePoint Add-in
	13.3.2. Adding the chrome to a Provider Hosted Add-in
	13.3.3. Add-in AppPart with Provider Hosted applications
	13.3.4. Provider Hosted Custom Actions

	14. Microsoft Teams
	14.1. Introduction
	14.2. Teams configuration for developing
	14.3. Developing for Teams and development tools
	14.3.1. Location of the Teams objects
	14.3.2. Teams App Studio
	14.3.3. Teams Developer Preview
	14.3.4. ngrok
	14.3.5. Cards

	14.4. Teams Tabs
	14.4.1. Personal Tabs
	14.4.2. Channel Tabs

	14.5. Bots
	14.6. Messaging Extensions
	14.6.1. Messaging Extensions with Search Commands
	14.6.2. Messaging Extensions with Action Commands

	14.7. Webhooks
	14.7.1. Incoming Webhooks
	14.7.2. Outgoing Webhooks

	 14.8. SharePoint Framework (SPFx) WebParts as Teams Tabs
	14.9. Teams Tabs as SPFx WebParts for SharePoint
	14.10. Managing Teams with PowerShell
	14.10.1. Connect to Teams
	14.10.2. CRUD operations for Teams
	14.10.3. CRUD operations for Channels
	14.10.4. Users and Policies management

	15. Power Automate
	15.1. Introduction
	15.2. Connectors
	15.2.1. Creation of a Custom Connector for Power Automate
	15.2.2. Installation of a Custom Connector for Power Automate

	15.3. Calling REST services directly
	15.3.1. Making a GET call
	15.3.2. Making a POST call

	15.4. Receiving HTTP calls directly
	15.4.1. Receiving a call with the Request action
	15.4.2. Using a Response action to react to a call

	15.5. PowerShell for Power Automate
	15.5.1. Connect to Power Automate
	15.5.2. Admin cmdlets for Power Automate
	15.5.3. Maker cmdlets for Power Automate
	15.5.4. Power Automate in SharePoint and PowerShell

	16. Power Apps
	16.1. Introduction
	16.2. Connectors
	16.3. Connecting Power Apps with Power Automate
	16.4. PowerShell for Power Apps
	16.4.1. Connect to Power Apps
	16.4.2. Admin cmdlets for Power Apps
	16.4.3. Maker cmdlets for Power Apps

